

Final report

Evaluation of different microwave digestion procedures for soil and waste samples

C. Vanhoof, F. Beutels, W. Brusten, K. Duyssens, W. Wouters and K. Tirez

Study accomplished under the authority of the Public Waste Agency of Flanders (OVAM) 2015/SCT/R/0026

January 2015

VITO NV Boeretang 200 - 2400 MOL - BELGIE Tel. + 32 14 33 55 11 - Fax + 32 14 33 55 99 vito@vito.be - www.vito.be

BTW BE-0244.195.916 RPR (Turnhout) Bank 375-1117354-90 ING BE34 3751 1173 5490 - BBRUBEBB

SAMENVATTING

De ontsluiting van vaste monsters (bodem en afval) is zonder twijfel een cruciale stap bij de bepaling van elementen. In Vlaanderen was de van toepassing zijnde methode, beschreven in CMA/2/II/A.3 versie februari 2010 (ministerieel goedgekeurd bij besluit van 18 januari 2012), gebaseerd op de Europese norm NBN EN 13656, die verwijst naar een vermogen gecontroleerde microgolf ontsluiting met behulp van HF:HNO₃:HCl. Momenteel worden eveneens temperatuur gecontroleerde microgolf ontsluitingen toegepast en daarom werd op vraag van de erkende laboratoria de CMA methode in februari 2013 aangepast. Een verwijzing naar een temperatuur gecontroleerde ontsluiting werd opgenomen gebaseerd op de procedure beschreven in de horizontale Europese norm NBN EN 16174. Toch waren geen vergelijkbare validatiegegevens beschikbaar met HF:HNO₃:HCl ontsluiting met beide ontsluitingsmethoden. Bijkomend werd door de erkende laboratoria gevraagd om de huidige tijdrovende tweestaps ontsluitingsmethode verder te vereenvoudigen. Als alternatief zou een éénstaps ontsluitingsmethode met HBF₄ kunnen worden toegepast.

In deze studie werden een aantal alternatieve ontsluitingsmethoden geëvalueerd om de procedure te vereenvoudigen enerzijds en de toepasbaarheid van de procedure uit te breiden naar verschillende soorten microgolf systemen anderzijds om alzo elementen in bodem- en afvalmonsters te bepalen. In dit kader werden de volgende aspecten onderzocht:

- Evaluatie van een éénstaps ontsluiting (met HBF₄) ter vervanging van de tweestaps ontsluiting met HF + H₃BO₃ ('HF-power') Deze procedure houdt een éénstaps ontsluiting in, met behoud van hetzelfde vermogen van ontsluiting van de silicaat matrix, met HBF₄ (vervanging HF met H₃BO₃). Bovendien geniet het gebruik van HBF₄ om veiligheidsredenen de voorkeur boven HF.
- Evaluatie van temperatuur gecontroleerde microgolf systemen als aanvulling op de vermogen gecontroleerde microgolf systemen
 De HBF₄ ontsluiting met vermogen gecontroleerde microgolfoven ('HBF₄ power') werd vergeleken met de temperatuur gecontroleerde ontsluiting ('HBF₄ temp').

Evaluatie van 10 bodemmonsters

Voor de 8 VLAREBO elementen (As, Cd, Cr, Cu, Pb, Ni, Zn en Hg) komen de resultaten bekomen met de alternatieve methoden ('HBF₄ power' en 'HBF₄ temp') overeen met deze van de referentiemethode ('HF-power'). Hogere meetspreidingen worden soms waargenomen bij monsters met een lagere concentratie. Er is echter geen indicatie van een systematische fout bij toepassing van de alternatieve methoden vergeleken met de referentiemethode. In paragraaf 5.1 op pagina 99 wordt weergegeven dat een totale meetspreiding van minder dan 20% wordt bekomen bij toepassing van de verschillende ontsluitingsmethoden. Deze meetspreiding kan men ook verwachten bij duplometingen indien enkel de referentiemethode wordt toegepast. Testen en analysen uitgevoerd bij een aantal erkende laboratoria bevestigen de inzetbaarheid van de geëvalueerde alternatieve methoden ter vervanging van de tijdrovende referentiemethode.

Voor de andere sporenelementen (Sb, Ba, Co, Mn, Mo, Se, Sn en V) kan dezelfde conclusie worden geformuleerd. Regelmatig worden lage concentraties van deze elementen gemeten resulterend in een hogere meetspreiding, maar niettemin kan worden gesteld dat vergelijkbare resultaten worden verkregen met de 3 ontsluitingsmethoden.

Voor de hoofdelementen (Na, Mg, Al, K, Ca, Ti, Mn en Fe) wordt een goede overeenkomst waargenomen tussen de resultaten van de alternatieve methoden en de referentiemethode,

behalve voor Ti. Vooral de Ti resultaten verkregen met de 'HBF₄ power' methode zijn aanzienlijk lager dan met de referentiemethode 'HF-power'.

Evaluatie van 10 afvalmonsters (waarvan 6 uit de validatiestudie van EN 13656)

Voor de VLAREMA 4bis-elementen (As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, Sb, Ba, Co, Mo, Se, Sn en V) worden vergelijkbare resultaten verkregen met de alternatieve methoden en de referentiemethode. In paragraaf 5.1 op pagina 99 wordt weergegeven dat een totale meetspreiding van minder dan 20% wordt bekomen bij toepassing van de verschillende ontsluitingsmethoden. Deze meetspreiding kan men ook verwachten bij duplometingen indien enkel de referentiemethode wordt toegepast. Bijkomend dient opgemerkt te worden dat voor de bepaling van Ba de ontsluitingsprocedure kritisch kan zijn en een invloed kan hebben op het verkregen resultaat (operationeel gedefinieerd). Bij de bepaling van dit element dient bijzondere aandacht besteed te worden aan de ontsluitingsprocedure. Dit effect werd eveneens vastgesteld tijdens de validatiestudie van EN 13656 in 1999. Testen en analysen uitgevoerd bij een aantal erkende laboratoria bevestigen de inzetbaarheid van de geëvalueerde alternatieve methoden ter vervanging van de tijdrovende referentiemethode.

Voor de hoofdelementen (Na, Mg, Al, K, Ca, Ti, Mn en Fe) kan dezelfde conclusie worden geformuleerd als voor de bodemmonsters. Een goede overeenkomst wordt waargenomen tussen de resultaten van de alternatieve methoden en de referentiemethode, behalve voor Ti.

Op basis van de verkregen resultaten kan de CMA methode CMA/2/II/A.3 worden aangepast. Allereerst wordt de procedure van de temperatuur gecontroleerde microgolf ontsluiting, zoals reeds in de CMA werkwijze beschreven, bevestigd. Ten tweede kan de éénstaps ontsluiting met HBF₄ als zuur ontsluitingsreagens in combinatie met HNO₃ en HCl worden toegevoegd.

SUMMARY

The digestion of solid samples (soils and waste) is without doubt a critical step in the determination of elements. In Flanders (Northern part of Belgium), the applicable method described in CMA/2/II/A.3 (Ministerial approved version of January 18, 2012) was based on the European Standard NBN EN 13656¹, which refers to a power-controlled microwave oven digestion using HF:HNO₃:HCl. Besides that also temperature controlled microwave oven digestions are applied and therefore, on the request of the recognized laboratories, the CMA method was adapted in February 2013. A reference to a temperature controlled digestion was included, based on the procedure described in the Horizontal European Standard NBN EN 16174⁴. Nevertheless no comparable validation data were available using the HF:HNO₃:HCl digestion with both digestion techniques. In addition, the recognized laboratories requested for further simplification of the current time consuming two-step digestion method. As alternative an one step digestion using HBF₄ might be introduced.

In this study some alternative digestion methods were evaluated to simplify the current procedure on one hand and to extend the applicability of the procedure to different types of micro wave instruments on the other for the determination of elements in soil and waste samples. In this framework the following aspects were considered:

- 1. Evaluation of an one-step digestion (HBF₄) as replacement for the two-steps digestion with $HF + H_3BO_3$ ('HF power') The procedure involves a one-step digestion, while maintaining the same power of digestion of the silicate matrix, by using HBF₄ (replacing HF with H₃BO₃). In addition, the use of HBF₄ is for safety reasons preferred over HF.
- Evaluation of temperature controlled microwave systems as an addition to power controlled microwave systems
 The HBF₄ digestion using power controlled microwave oven ('HBF₄ power') was compared versus temperature controlled digestion ('HBF₄ temp').

Evaluation of 10 soil samples

For the <u>8 VLAREBO¹ elements</u> (As, Cd, Cr, Cu, Pb, Ni, Zn and Hg) the results obtained with the alternative methods ('HBF₄ power' and 'HBF₄ temp'), corresponds with the results of the reference method ('HF power'). Higher measurements deviations are sometimes observed on samples with lower concentration levels. But there is no indication of a systematic error when applying the alternative methods with respect to the reference method. In paragraph 5.1 on page 99 it is shown that the overall measurement variation is situated in a range of < 20% if different digestion procedures are applied, which can also be expected from replicate/duplo analyses determined with the reference method only. Tests and analyses carried out by a few recognized laboratories confirm the applicability of the evaluated alternative methods to replace the time-consuming reference method.

For the <u>other trace elements</u> (Sb, Ba, Co, Mn, Mo, Se, Sn and V) the same conclusion can be formulated. Often low concentrations of these elements are measured resulting in a higher measurement deviation, but nevertheless it can be stated that comparable results are obtained with the 3 digestion methods.

¹ Flemish regulation on soil remediation and protection regulations

For the <u>major elements</u> (Na, Mg, Al, K, Ca, Ti, Mn and Fe) a good correspondence is observed between the results of the alternative methods and the reference method, except for Ti. Especially the results obtained with the 'HBF₄ power' method are significantly lower than with the reference method 'HF power'.

Evaluation of 10 waste samples (of which 6 from the validation study of EN 13656)

For the <u>VLAREMA 4bis² elements</u> (As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, Sb, Ba, Co, Mo, Se, Sn and V) comparable results are obtained with the alternative methods and the reference method. In paragraph 5.1 on page 99 it is shown that the overall measurement variation is situated in a range of < 20% if different digestion procedures are applied, which can also be expected from replicate/duplo analyses determined with the reference method only. Moreover, for the determination of Ba it is observed that the digestion procedure can be critical and can have an influence on the obtained results (operational defined). Special attention needs to be given to the digestion procedure for the determination of this element. This effect is no surprise as it was also established during the validation trial of EN 13656 in 1999. Tests and analyses carried out by a few recognized laboratories confirm the applicability of the evaluated alternative methods to replace the time-consuming reference method.

For the <u>major elements</u> (Na, Mg, Al, K, Ca, Ti, Mn and Fe) the same conclusion can be formulated as for the soil samples. A good correspondence is observed between the results of the alternative methods and the reference method, except for Ti. Especially the results obtained with the 'HBF₄ power' method are significantly lower than with the reference method 'HF power'.

Based on the obtained results the CMA method CMA/2/II/A.3 can be adapted. First of all, the procedure for a temperature controlled microwave oven digestion, as already described in the CMA method, is confirmed. Secondly, the one step digestion using HBF_4 as acid digestion reagent in combination with HNO_3 and HCl can be added.

² Flemish regulation on sustainable management of material cycles and waste – draft dec 2013

TABLE OF CONTENTS

Samenva	atting		_ I
Summar	У		
Table of	Conte	ents	_v
List of Fig	gures		VIII
List of Ta	bles_		_ XII
СНАРТЕ	R 1	Introduction	_1
СНАРТЕ	R 2	Selection of HBF₄ acid	_ 3
2.1.	Sele	ction of HBF₄ acid	3
СНАРТЕР	R 3	Digestion of soil samples	_ 5
3.1.	Intro	oduction	5
3.2.	Sele	cted soil samples	5
<i>3.3.</i> 3.3. 3.3. 3.3.	Deso 1. 2. 3.	cription digestion procedure and ICP-AES/CV-AFS measurements Digestion with HF:HNO ₃ :HCl and power controlled microwave digestion (HF power Digestion with HBF ₄ and power controlled microwave digestion (HBF ₄ power) Digestion with HBF ₄ and temperature controlled microwave digestion (HBF ₄ temp	5 r)6 _6)7
3.4.	Eval	uation of the digestion process	7
<i>3.5.</i> 3.5. 3.5.	Resi 1. 2.	Ilts of the VLAREBO elements Element arsenic Element cadmium Element chromium	<i>10</i> _ 10 _ 11 _ 12
3.5.	5. 4.	Element cupper	- 13 14
3.5.	5.	Element lead	_ _15
3.5.	6.	Element nickel	_ 17
3.5. 3.5.	7. 8.	Element zincElement mercury	18 _ 19
3.6. 3.6.	о. <i>Resu</i> 1.	Ilts of the other trace elements Element antimony	21 21 21
3.6.	2.	Element barium	_ _22
3.6.	3.	Element cobalt	_ 23
3.6.	4.	Element molybdenum	_ 25
3.6.	5.	Element tin	26
3.6.	ь.	Liement vanadium	_ 27
3.7.	Resi	Ilts of major elements	29
3.7.	1. 2	Element sodium	29
3.7.	2.	Element magnesium	_ 30
3.7.	≾ .	Element aluminium	_ 31
3.7.	4. r	Element potassium	_33
3./.	5.	Liement calcium	_ 34

3.7.6. Elemen 3.7.7. Elemen 3.7.8. Elemen		Element titanium Element manganese Element iron	35 37 38
3.8.	Eval	uation of the trueness of the QC samples in the digestion run of the soil samples	39
3.9.	Ove	rview of all elements	41
СНАРТЕ	R 4	Digestion of waste samples	45
4.1.	Intro	oduction	45
4.2.	Sele	cted waste samples	45
<i>4.3.</i> 4.3 4.3	Deso .1. .2.	cription digestion procedure and ICP-AES/CV-AFS measurements Digestion with HF:HNO ₃ :HCl and power controlled microwave digestion (HF powe 46 Digestion with HBF ₄ and power controlled microwave digestion (HBF ₄ power)	46 r) 47
4.3	.3.	Digestion with HBF_4 and temperature controlled microwave digestion (HBF_4 temp)47
4.4.	Eval	luation of the digestion process	47
4.5.	Resi	Ilts of the VLAREMA elements	50
4.5	.1.	Element arsenic	50
4.5	.2.	Element cadmium	52
4.5	.3.	Element chromium	53
4.5	.4.	Element cupper	55
4.5	.5.	Element lead	56
4.5	.6.	Element nickel	57
4.5	.7.	Element zinc	59
4.5	.8.	Element mercury	60
4.5	.9.	Element antimony	61
4.5	.10.	Element barium	63
4.5	.11.	Element cobalt	64
4.5	.1.	Element manganese	65
4.5	.2.	Element molybdenum	67
4.5	.3.	Element selenium	68
4.5	.4.	Element tin	69
4.5	.5.	Element vanadium	71
4.6.	Resi	ılts of major elements	72
4.6	.1.	Element sodium	72
4.6	.2.	Element magnesium	73
4.6	.3.	Element aluminium	75
4.6	.4.	Element potassium	76
4.6	.5.	Element calcium	77
4.6	.6.	Element titanium	79
4.6	.7.	Element iron	80
4.7.	Eval	luation of the trueness of the QC samples in the digestion run of the waste samples	81
4.8.	Ove	rview of sample CEN 6/99 Fly ash (20143961)	83
4.9.	Ove	rview of sample CEN 7/99 Bottom ash (20143962)	85
4.10.	0	verview of sample CEN 8/99 Ink waste (20143963)	86
4.11.	0	verview of sample CEN 9/99 Sewage sludge – electronic (20143964)	87

4.12.	Overview of sample CEN 10/99 Sewage sludge – BCR 146R (20143965)	89
4.13.	Overview of sample BCR 176R (20143966)	90
4.14.	Overview of CEN samples	91
4.15.	Overview of all elements	95
СНАРТЕ	R 5 Overall evaluation of the digestion methods	99
5.1.	Evaluation of the measurement variation	99
5.2.	Evaluation of data of recognized laboratories	101
СНАРТЕ	R 6 Conclusion	105
Annex A	Analytical results of the soil samples using different digestion procedures	107
Annex B	Analytical results of the waste samples using different digestion procedures	108
Referen	ces	109

LIST OF FIGURES

Figure 1 Digestion profile of the soil samples using HF:HNO $_3$:HCl (run 1) – power controlled	_
program	_ /
program	8
Figure 3 Digestion profile of the soil samples using HBE ₄ (run 1) – power controlled program	- 0 8
Figure 4 Digestion profile of the soil samples using HBF ₄ (run 2) – power controlled program $__$	0
Figure 5 Digestion profile of the soil samples using HBF ₄ (run 1) – temperature controlled program	9 am 9
Figure 6 As results of the soil samples using the 3 digestion methods	10
Figure 7 % CV _e of the 3 As results by sample	0
Figure 8 Difference between the reference method for As and the 2 alternative methods	
Figure 9 Cd results of the soil samples using the 3 digestion methods	
Figure 10 % CV _{\bullet} of the 3 Cd results by sample	12
Figure 11 Difference between the reference method for Cd and the 2 alternative methods	12
Figure 12 Cr results of the soil samples using the 3 digestion methods	13
Figure 13 % CV _{\bullet} of the 3 Cr results by sample	13
Figure 14 Difference between the reference method for Cr and the 2 alternative methods	14
Figure 15 Cu results of the soil samples using the 3 digestion methods	14
Figure 16 % CV ₀ of the 3 Cu results by sample	
Figure 17 Difference between the reference method for Cu and the 2 alternative methods	15
Figure 18 Pb results of the soil samples using the 3 digestion methods	0
Figure 19 % CV ₀ of the 3 Pb results by sample	0
Figure 20 Difference between the reference method for Pb and the 2 alternative methods	0
Figure 21 Ni results of the soil samples using the 3 digestion methods	0
Figure 22 % CV ₀ of the 3 Ni results by sample	/
Figure 23 Difference between the reference method for Ni and the 2 alternative methods	18
Figure 24 Zn results of the soil samples using the 3 digestion methods	18
Figure 25 % CV ₀ of the 37n results by sample	19
Figure 26 Difference between the reference method for 7n and the 2 alternative methods	9
Figure 27 Hg results of the soil samples using the 3 digestion methods	20
Figure 28 % CV _p of the 3 Hg results by sample	20
Figure 29 Difference between the reference method for Hg and the 2 alternative methods	20
Figure 30 Sb results of the soil samples using the 3 digestion methods	21
Figure 31 % CV _{\bullet} of the 3 Sb results by sample	21
Figure 32 Difference between the reference method for Sh and the 2 alternative methods	
Figure 33 Ba results of the soil samples using the 3 digestion methods	 22
Figure 34 % CV ₀ of the 3 Ba results by sample	23
Figure 35 Difference between the reference method for Ba and the 2 alternative methods	0
Figure 36 Co results of the soil samples using the 3 digestion methods	24
Figure 37 % CV ₂ of the 3 Co results by sample	- 24 24
Figure 38 Difference between the reference method for Co and the 2 alternative methods	- 24 24
Figure 39 Mo results of the soil samples using the 3 digestion methods	- 2 4 25
Figure 40 % CV ₂ of the 3 Mo results by sample	- 25
Figure 41 Difference between the reference method for Mo and the 2 alternative methods	26
Figure 42 Sn results of the soil samples using the 3 digestion methods	- <u>2</u> 0 26
Figure 42 Sh results of the 3 Sh results by samples a_{B} and b_{B} and b_{B} and b_{B}	- 20 27
Figure 44 Difference between the reference method for Sn and the 2 alternative methods	- <u>- '</u> 77
Figure 45 V results of the soil samples using the 3 digestion methods	- <u>- /</u> 28
Figure 46 % CV ₀ of the 3 V results by sample	- <u>-</u> 20 28
"Date to be defined a results of sumple	_ 20

Figure 47 Difference between the reference method for V and the 2 alternative methods	_ 28
Figure 48 Na results of the soil samples using the 3 digestion methods	_ 29
Figure 49 % CV _R of the 3 Na results by sample	_ 29
Figure 50 Difference between the reference method for Na and the 2 alternative methods	_ 30
Figure 51 Mg results of the soil samples using the 3 digestion methods	_ 30
Figure 52 % CV _R of the 3 Mg results by sample	_ 31
Figure 53 Difference between the reference method for Mg and the 2 alternative methods	_ 31
Figure 54 Al results of the soil samples using the 3 digestion methods	_ 32
Figure 55 % CV _R of the 3 Al results by sample	_ 32
Figure 56 Difference between the reference method for AI and the 2 alternative methods	_ 32
Figure 57 K results of the soil samples using the 3 digestion methods	_ 33
Figure 58 % CV _R of the 3 K results by sample	33
Figure 59 Difference between the reference method for K and the 2 alternative methods	_ 34
Figure 60 Ca results of the soil samples using the 3 digestion methods	34
Figure 61 % CV _R of the 3 Ca results by sample	35
Figure 62 Difference between the reference method for Ca and the 2 alternative methods	35
Figure 63 Ti results of the soil samples using the 3 digestion methods	36
Figure 64 % CV _R of the 3 Ti results by sample	36
Figure 65 Difference between the reference method for Ti and the 2 alternative methods	36
Figure 66 Mn results of the soil samples using the 3 digestion methods	37
Figure 67 % CV _R of the 3 Mn results by sample	37
Figure 68 Difference between the reference method for Mn and the 2 alternative methods	38
Figure 69 Fe results of the soil samples using the 3 digestion methods	38
Figure 70 % CV _R of the 3 Fe results by sample	39
Figure 71 Difference between the reference method for Fe and the 2 alternative methods	39
Figure 72 Overview ratio alternative methods vs the reference method for the elements As, Cd, C	Cr
and Cu in soil samples	_ 42
Figure 73 Overview ratio alternative methods vs the reference method for the elements Pb, Ni, 2	Zn
and Hg in soil samples	_ 42
Figure 74 Overview ratio alternative methods vs the reference method for the elements Sb, Ba,	Co,
Mo and V in soil samples	_ 43
Figure 75 Overview ratio alternative methods vs the reference method for the elements Na, Mg.	, Al
and K in soil samples	_ 43
Figure 76 Overview ratio alternative methods vs the reference method for the elements Ca, Ti, N	Иn
and Fe in soil samples	_ 44
Figure 77 Digestion profile of the waste samples using HF:HNO ₃ :HCl (run 1) – power controlled	
program	_ 48
Figure 78 Digestion profile of the waste samples using HF:HNO ₃ :HCl (run 2) – power controlled	
program	_ 48
Figure 79 Digestion profile of the waste samples using HBF ₄ (run 1) – power controlled program	49
Figure 80 Digestion profile of the waste samples using HBF ₄ (run 2) – power controlled program	49
Figure 81 Digestion profile of the soil samples using HBF ₄ (run 1) – temperature controlled progr	am
	_ 50
Figure 82 As results of the waste samples using the 3 digestion methods	_ 51
Figure 83 % CV _R of the 3 As results by sample	_ 51
Figure 84 Difference between the reference method for As and the 2 alternative methods	_ 52
Figure 85 Cd results of the waste samples using the 3 digestion methods	_ 52
Figure 86 % CV _R of the 3 Cd results by sample	_ 53
Figure 87 Difference between the reference method for Cd and the 2 alternative methods	_ 53
Figure 88 Cr results of the waste samples using the 3 digestion methods	_ 54
Figure 89 % CV _R of the 3 Cr results by sample	_ 54

Figure 90 Difference between the reference method for Cr and the 2 alternative methods	54
Figure 91 Cu results of the waste samples using the 3 digestion methods	55
Figure 92 % CV _R of the 3 Cu results by sample	55
Figure 93 Difference between the reference method for Cu and the 2 alternative methods	56
Figure 94 Pb results of the waste samples using the 3 digestion methods	56
Figure 95 % CV _R of the 3 Pb results by sample	57
Figure 96 Difference between the reference method for Pb and the 2 alternative methods	57
Figure 97 Ni results of the waste samples using the 3 digestion methods	58
Figure 98 % CV_{R} of the 3 Ni results by sample	58
Figure 99 Difference between the reference method for Ni and the 2 alternative methods	
Figure 100 Zn results of the waste samples using the 3 digestion methods	59
Figure 101 % CV _R of the 3 Zn results by sample	59
Figure 102 Difference between the reference method for Zn and the 2 alternative methods	60
Figure 103 Hg results of the waste samples using the 3 digestion methods	60
Figure 104 % CV_{R} of the 3 Hg results by sample	 61
Figure 105 Difference between the reference method for Hg and the 2 alternative methods	 61
Figure 106 Sb results of the waste samples using the 3 digestion methods	62
Figure 107 % CV_{R} of the 3 Sb results by sample	 62
Figure 108 Difference between the reference method for Sb and the 2 alternative methods	62
Figure 109 Ba results of the waste samples using the 3 digestion methods	63
Figure 110 % CV_{R} of the 3 Ba results by sample	63
Figure 111 Difference between the reference method for Ba and the 2 alternative methods	 64
Figure 112 Co results of the waste samples using the 3 digestion methods	64
Figure 113 % CV _R of the 3 Co results by sample	65
Figure 114 Difference between the reference method for Co and the 2 alternative methods	65
Figure 115 Mn results of the waste samples using the 3 digestion methods	66
Figure 116 % CV _R of the 3 Mn results by sample	66
Figure 117 Difference between the reference method for Mn and the 2 alternative methods	66
Figure 118 Mo results of the waste samples using the 3 digestion methods	67
Figure 119 % CV _R of the 3 Mo results by sample	67
Figure 120 Difference between the reference method for Mo and the 2 alternative methods	68
Figure 121 Se results of the waste samples using the 3 digestion methods	68
Figure 122 % CV _R of the 3 Se results by sample	69
Figure 123 Difference between the reference method for Se and the 2 alternative methods	69
Figure 124 Sn results of the waste samples using the 3 digestion methods	70
Figure 125 % CV _R of the 3 Sn results by sample	70
Figure 126 Difference between the reference method for Sn and the 2 alternative methods	70
Figure 127 V results of the waste samples using the 3 digestion methods	71
Figure 128 % CV _R of the 3 V results by sample	71
Figure 129 Difference between the reference method for V and the 2 alternative methods	72
Figure 130 Na results of the waste samples using the 3 digestion methods	72
Figure 131 % CV _R of the 3 Na results by sample	73
Figure 132 Difference between the reference method for Na and the 2 alternative methods	73
Figure 133 Mg results of the waste samples using the 3 digestion methods	74
Figure 134 % CV _R of the 3 Mg results by sample	74
Figure 135 Difference between the reference method for Mg and the 2 alternative methods	74
Figure 136 AI results of the waste samples using the 3 digestion methods	75
Figure 137 % CV _R of the 3 Al results by sample	75
Figure 138 Difference between the reference method for AI and the 2 alternative methods	76
Figure 139 K results of the waste samples using the 3 digestion methods	76
Figure 140 % CV _R of the 3 K results by sample	77

Figure 141 Difference between the reference method for K and the 2 alternative methods	77
Figure 142 Ca results of the waste samples using the 3 digestion methods	78
Figure 143 % CV _R of the 3 Ca results by sample	78
Figure 144 Difference between the reference method for Ca and the 2 alternative methods	78
Figure 145 Ti results of the waste samples using the 3 digestion methods	79
Figure 146 % CV _R of the 3 Ti results by sample	79
Figure 147 Difference between the reference method for Ti and the 2 alternative methods	80
Figure 148 Fe results of the waste samples using the 3 digestion methods	80
Figure 149 % CV _R of the 3 Fe results by sample	81
Figure 150 Difference between the reference method for Fe and the 2 alternative methods	81
Figure 151 Results of CEN 6/99 Fly ash for the 3 digestion methods	84
Figure 152 Results of CEN 7/99 Bottom ash for the 3 digestion methods	86
Figure 153 Results of CEN 8/99 Ink waste for the 3 digestion methods	87
Figure 154 Results of CEN 9/99 sewage sludge for the 3 digestion methods	88
Figure 155 Results of CEN 10/99 Sewage sludge for the 3 digestion methods	90
Figure 156 Results of BCR 176R for the 3 digestion methods	91
Figure 157 Overview ratio alternative methods vs the reference method for the elements As, C	.d,Cr
and Cu in the CEN waste samples	92
Figure 158 Overview ratio alternative methods vs the reference method for the elements Pb, N	li, Zn
and Hg in the CEN waste samples	93
Figure 159 Overview ratio alternative methods vs the reference method for the elements Sb, B	— а,
Co, Mn in the CEN waste samples	<i>.</i> 93
Figure 160 Overview ratio alternative methods vs the reference method for the elements Mo.	 Se,
Sn and V in the CEN waste samples	.94
Figure 161 Overview ratio alternative methods vs the reference method for the elements Na, N	 ∕Ig,
Al and K in the CEN waste samples	94
Figure 162 Overview ratio alternative methods vs the reference method for the elements Ca, T	i and
Fe in the CEN waste samples	95
Figure 163 Overview ratio alternative methods vs the reference method for the elements As, C	d,Cr
and Cu in waste samples	96
Figure 164 Overview ratio alternative methods vs the reference method for the elements Pb, N	li, Zn
and Hg in waste samples	96
Figure 165 Overview ratio alternative methods vs the reference method for the elements Sb, B	a, Co
and Mn in waste samples	97
Figure 166 Overview ratio alternative methods vs the reference method for the elements Mo.	Se,
Sn and V in waste samples	, 97
Figure 167 Overview ratio alternative methods vs the reference method for the elements Na, N	.— ∕lg,
Al, K in waste samples	98
Figure 168 Overview ratio alternative methods vs the reference method for the elements Ca. T	i and
Fe in waste samples	98
Figure 169 Overview ratio alternative methods vs the reference method in soil samples (eleme	nts
included are Vlarebo elements)	99
Figure 170 Overview ratio alternative method vs the reference methods in waste samples	_ **
(elements included are Vlarema elements)	101
Figure 171 Ratio measurement value vs reference value in a soil sample (N \approx 70) for As. Cd. Cr a	and
Cu for both HE and HBE ₄ digestions	102
Figure 172 Ratio measurement value vs reference value in a soil sample (N \approx 70) for Pb. Ni. 7n a	- and
Hg for both HF and HBF₄ digestions	103

LIST OF TABLES

Table 1 Results of the blank values for different HBF ₄ solutions	_ 4
Table 2 Overview of the performance of the QC samples	_ 40
Table 3 Overview of the performance of the QC samples	82
Table 4 Results of CEN 6/99 Fly ash for the 3 digestion methods	_ 84
Table 5 Results of CEN 7/99 Bottom ash for the 3 digestion methods	85
Table 6 Results of CEN 8/99 Ink waste for the 3 digestion methods	86
Table 7 Results of CEN 9/99 Sewage Sludge for the 3 digestion methods	88
Table 8 Results of CEN 10/99 Sewage sludge for the 3 digestion methods	_ 89
Table 9 Results of BCR 176R for the 3 digestion methods	_ 90
Table 10 Limit values and intralaboratory measurement uncertainty for soil samples obtained wi	ith
the reference method	100
Table 11 Intralaboratory measurement uncertainty for waste sample obtained with the reference	ce
method	101

CHAPTER 1 INTRODUCTION

The digestion of solid samples (soils and waste) is without doubt a critical step in the determination of elements. In Flanders (Belgium), soil and waste samples are digested using an acid mixture of HF:HNO₃:HCl, according to NBN EN 13656¹ (Characterization of waste – Microwave assisted digestion with hydrofluoric (HF), nitric (HNO₃) and hydrochloric (HCl) acid mixture for subsequent determination of elements).

In 2009, a study was commissioned by the Public Waste Agency of Flanders (OVAM) to look for alternative and/or fast digestion methods for the determination of elements (VITO report 2009/MANT/R/010²). The study confirmed that the use of different temperature and pressure settings and combinations of acids during the destruction may lead to differences in recovery (mainly for the elements Ni and Cr, this was strongly pronounced) and therefore, none of the proposals were retained.

The applicable method described in CMA/2/II/A.3³ (Ministerial approved version of January 18, 2012) is based on the European Standard NBN EN 13656, which refers to a power-controlled microwave oven digestion using HF:HNO₃:HCl. Besides that also temperature controlled microwave oven digestions are applied and therefore, on the request of the recognized laboratories, the CMA method was adapted in 2013. A reference to a temperature controlled digestion was included, based on the procedure described in the Horizontal European Standard NBN EN 16174⁴ (Sludge, treated biowaste and soil – Digestion of aqua regia soluble fractions of elements). Nevertheless no comparable validation data were available using the HF:HNO₃:HCl digestion with both digestion techniques.

In addition, the recognized laboratories requested for further simplification of the current two-step method of digestion. In the current method the digestion for solids involves a two-step procedure. At first, 0.2 to 0.5 g of the sample is weighed into the digestion flask and 6 ml of HCl, 2 ml of HNO₃ and 2 ml of HF is added. After running the digestion microwave program, the containers are cooled. Then, 22 ml of a solution of boric acid (H₃BO₃) is added, one closes the containers back and they are warmed up again. The second step is necessary in order to resolve possible fluoride precipitate into solution and to complex the excess of HF as BF₄⁻.

Refering to the issues above to simplify the procedure and to extend the applicable instruments, the following alternative/rapid digestion methods are evaluated for the determination of elements:

- Evaluation of an alternative acid (one-step digestion) as replacement for two-steps digestion with HF + H₃BO₃ This involves a one-step digestion, while maintaining the same power of digestion of the silicate matrix, by using HBF₄ (replacing HF with H₃BO₃). In addition, the use of HBF₄ is for
- safety reasons preferred over HF.
 2. Evaluation of temperature controlled microwave systems as an addition to power controlled microwave systems
 Comparison of the CMA/2/II/A.3 procedure using power controlled microwave oven versus temperature controlled digestion.

This digestion methods for the determination of elements will be tested in various samples (soil and waste samples) and reference materials.

CHAPTER 2 SELECTION OF HBF₄ ACID

2.1. SELECTION OF HBF₄ ACID

The purity of the acid HBF_4 is one of the critical factors in order to obtain correct results. From different vendors 4 commercially available concentrated HBF_4 solutions were verified for their blank values. The selected HBF_4 solutions were from:

- Blank 1: Chemlab CL00.2009.025 (batchnumber 19.0840811.5) 380
- Blank 2: Sigma 207-934-25g (batchnumber SHBC8208V)
 - Blank 3: Alfa Aesar L14037 (batchnumber 10175822)
- Blank 4: Alfa aesar 11484 (batchnumber J26Y027)

In a digestion vessel 6 ml of HCl (Suprapur), 2 ml of HNO_3 (Suprapur) and 2 ml of HBF_4 was added. The following digestion program was applied:

Time (min)	Power (W)
2	250
2	0
5	250
5	400
5	500

From each HBF₄ solution duplicate blank digestions were conducted to verify the blank values. The concentration of the elements Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Ti, Tl, V and Zn in these blank digestion solutions were determined by ICP-AES. In this case the elements were calibrated in 6% HCl and 2% HNO_3 .

The results (Table 1) showed that the blank digestion solution produced from the HBF₄ solution of Chemlab (ultra pure) (blank 1) contained the lowest concentrations of the different elements to be determined. Therefore, this HBF₄ solution was used to perform the further measurements. All elements were calibrated using matrix matched standards (including 6% HCl, 2% HNO₃ and 2% HBF₄).

It should be noted that the blank value might be batch dependent. Verification of the used batch should be performed by the lab itself.

380 g HBF₄/kg 48 wt% in water 50 wt% 48 wt%

	Blanco1A	RSD	Blanco1B	RSD	Blanco2A	RSD	Blanco2B	RSD	Blanco3A	RSD	Blanco3B	RSD	Blanco4A	RSD	Blanco4B	RSD
	μg/l	%	μg/l	%	μg/l	%	μg/l	%	μg/l	%	μg/l	%	μg/l	%	μg/l	%
As 188.979 Axiaal	30	0,1	29	2,2	89	1,0	89	1,1	169	0,5	169	0,4	91	0,3	92	0,0
Ba 455.403 Axiaal	0,1	1,5	0,1	9,8	1,3	1,0	1,3	0,4	0,7	4,6	0,6	3,5	0,6	3,3	0,6	1,6
Be 313.107 Axiaal	0,2	19	0,1	1,3	0,1	23	0,1	1,2	0,2	35	0,1	0,3	0,1	6,2	0,1	15,2
Cd 214.438 Axiaal	0,4	9,2	0,4	7,2	0,7	4,4	0,7	2,2	0,7	1,0	0,7	3,3	0,8	2,7	0,7	0,1
Co 228.616 Axiaal	-2,9	2,9	-2,9	4,0	-5,4	0,7	-5,4	0,9	-5,7	2,2	-5,6	0,0	-6,0	0,1	-6,0	0,7
Cr 205.552 Axiaal	0,2	9,1	0,3	17	14	0,2	14	0,2	0,5	27	0,4	27	-0,1	193	-0,3	39
Mn 257.610 Axiaal	0,9	18	2,4	7,7	213	1,1	212	0,9	10	1,1	10	0,9	8,5	0,9	8	0
Mo 202.030 Axiaal	2,8	38	0,5	31	0,5	71	0,5	20	1,9	5,8	1,5	19	0,1	193	0,2	66
Ni 231.604 Axiaal	0,3	9,0	0,1	156	7,4	1,1	7,5	0,6	389	0,2	386	0,0	8,8	0,9	8,6	1,1
Pb 220.353 Axiaal	-1,5	37	-3,5	25	-7,3	0,8	-8,4	7,6	-8,4	5,7	-8,5	11	-8,1	4,1	-8,7	7,1
Sb 206.833 Axiaal	42	3,6	44	1,1	69	0,0	69	0,1	70	1,5	71	0,1	75	2,3	74	1,4
Se 196.026 Axiaal	-13	4,3	-10	12	-19	15	-19	1,7	-22	4,4	-22	4,4	-24	6,6	-24	0,6
Sn 189.933 Axiaal	9,2	1,0	9,2	5,6	17	0,4	17	3,5	17	2,8	17	1,7	18	2,2	18	1,0
Sr 407.771 Radiaal	0,2	35	-0,1	9,5	25	0,2	25	0,3	18	0,3	18	0,5	29	0,6	29	0,5
Ti 334.941 Axiaal	0,3	11	-0,3	0,5	-0,1	16	-0,1	43	3,2	0,6	3,2	0,7	0,8	4,0	0,8	0,7
Tl 190.800 Axiaal	8,3	20	6,3	26	9,6	17	12,1	11,9	12	9,5	12	3,0	11	16,5	12	3,9
V 292.402 Axiaal	0,8	11	0,7	11	1,6	7,5	1,6	1,0	1,6	1,6	1,6	3,4	1,7	3,0	1,8	6,1
Na 589.592 Radiaal	67	3,8	41	4,1	1129	1,8	1131	1,7	916	3,0	927	1,1	141	8,0	146	1,2
K 766.491 Radiaal	-48	41	-56	64	84	5,6	145	29	32	311	5,2	490	-94	53,6	-76	28,5
Ca 317.933 Radiaal	-15	11,7	-22	6,3	338	0,3	332	1,0	416	0,2	410	0,2	666	1,6	675	0,7
Mg 279.079 Radiaal	25	44	21	17	163	2,5	149	6,7	219	0,6	212	19	147	6,7	140	9,3
Fe 259.940 Axiaal	1,3	8,0	2,6	8,1	111	0,5	110	0,2	183	0,0	185	0,2	271	0,2	273	1,1
Al 396.152 Axiaal	164	0,4	-10	7,4	5,5	14	5,4	6,3	44	0,8	40	2,6	8,1	3,6	16,3	1,6
Cu 324.754 Axiaal	-1,5	26,2	-2,1	12	-1,3	17	-1,1	4,2	4,5	2,9	4,4	4,7	-0,7	61,8	-0,9	34,3
Zn 213.856 Axiaal	-1,4	45,7	-3,3	0,7	-0,7	5,7	-1,2	2,4	-2,4	16	-1,8	3,4	-2,9	2,8	-3,1	1,5

Table 1 Results of the blank values for different HBF₄ solutions

CHAPTER 3 DIGESTION OF SOIL SAMPLES

3.1. INTRODUCTION

In Flanders, soil and waste samples are digested using the same digestion method with HF:HNO₃:HCl. In case a soil sample is contaminated with several elements, it might be considered as a waste sample. Using the same digestion method, the obtained results can be verified towards the legislative values of soils as well as of waste.

Untill now soil samples were digested using an acid mixture of HF:HNO₃:HCl and a power controlled microwave digestion oven, according to the procedure describe in NBN EN 13656. In this study the following two items were evaluated:

- Evaluation of an alternative acid (one-step digestion) as replacement for two-steps digestion with HF + H₃BO₃ This involves a one-step digestion, while maintaining the same power of digestion of the silicate matrix, by using HBF₄ (replacing HF with H₃BO₃). In addition, the use of HBF₄ is for safety reasons preferred over HF.
- Evaluation of temperature controlled microwave systems as an addition to power controlled microwave systems
 Comparison of the CMA/2/II/A.3 procedure using power controlled microwave oven versus temperature controlled digestion. The evaluation was performed using the HBF₄ acid digestion.

3.2. SELECTED SOIL SAMPLES

The 10 selected soil samples were samples collected in Flanders (Belgium). All these samples were dried at 105°C and fine ground with the planetary ball mill (according to EN 13656 < 250 μ m). As control samples a round robin soil sample (SETOC 701) – QC1 - , distributed by Wageningen, and a certified soil samples (NIST 2711) – QC 2 – were included in the analytical process.

3.3. DESCRIPTION DIGESTION PROCEDURE AND ICP-AES/CV-AFS MEASUREMENTS

All digestions were performed using an Anton Paar microwave system (Multiwave 3000). The system is equipped with an immersing temperature probe with integrated pressure sensor which is positioned in one reference vessel and infrared sensors are located underneath the rotor to simultaneously measure the temperature and pressure of each vessel. The system is capable of performing digestions using a power controlled or a temperature controlled microwave programme.

The digested solutions were analysed with ICP-AES^c (Perkin Elmer, Optima 3000) for the determination of the elements. The calibration was set-up with matrix-matched standards fot both axial and radial view. After digestion a dilution of at least a factor of 5 was applied, except for the

^c Inductively coupled plasma atomic emission spectrometry

determination of element concentrations nearby the reporting limit. As internal standard Rh was used and the suppression of the internal standard was for all samples limited to maximum 10%. Data obtained in axial view were Rh corrected, while no Rh correction was applied on data measured in radial view.

Mercury was determined with CV-AFS^d (Leeman, HYDRA AF Automated Hg-analyzer).

3.3.1. DIGESTION WITH HF:HNO3:HCL AND POWER CONTROLLED MICROWAVE DIGESTION (HF POWER)

About 0.5 g of sample was weighed into the vessel. Then the following acids were separately added: 6 ml HCl, 2 ml HNO₃ and 2 ml HF. The digestion vessel was placed into the microwave unit (8 positions) and the following digestion process was applied:

	Time (min)	Power (W)
Stap 1	2	250
Stap 2	2	0
Stap 3	5	250
Stap 4	5	400
Stap 5	5	500

At the end of the programme the vessels were cooled down to room temperature. Subsequently, 22 ml of 4% m/m of boric acid was added and the vessels were placed in the microwave unit applying the following process:

Time (min)	Power (W)
3	300

After cooling the digested solution was transferred to a volumetric flask and filled up to 100 ml with ultrapure water.

Each batch contains 1 blank, 1 control sample (QC1 or QC2), 5 samples and 1 duplo sample.

3.3.2. DIGESTION WITH HBF₄ AND POWER CONTROLLED MICROWAVE DIGESTION (HBF₄ POWER)

About 0.5 g of sample was weighed into the vessel. Then the following acids were separately added: 6 ml HCl, 2 ml HNO₃ and 2 ml HBF₄ and the following digestion process was applied:

Time (min)	Power (W)
2	250
2	0
5	250
5	400
5	500

After cooling the digested solution was transferred to a volumetric flask and filled up to 100 ml with ultrapure water.

Each batch contains 1 blank, 1 control sample (QC1 or QC2), 5 samples and 1 duplo sample.

^d Cold vapour atomic fluorescence spectrometry

3.3.3. DIGESTION WITH HBF4 AND TEMPERATURE CONTROLLED MICROWAVE DIGESTION (HBF4 TEMP)

About 0.5 g of sample was weighed into the vessel. The acids 6 ml HCl, 2 ml HNO₃ and 2 ml HBF₄ were separately added. The digestion vessel was placed into the microwave unit (8 positions) and the temperature was raised with a heating rate of 15°C min⁻¹ to 175°C and remained at 175°C for 10 minutes. After cooling the digested solution was transferred to a volumetric flask and filled up to 100 ml with ultrapure water.

Each batch contains 1 blank, 1 control sample (QC1 or QC2), 5 samples and 1 duplo sample.

3.4. EVALUATION OF THE DIGESTION PROCESS

As the system is equipped with an immersing temperature probe with integrated pressure sensor in the first reference vessel and infrared sensors to measure the temperature of each vessel, it was interesting to follow up the digestion profiles during the complete cycle.

In Figure 1 and Figure 2 the digestion profiles of the soil samples using HF:HNO₃:HCl (run 1 and run 2, respectively) with a power controlled program are shown. The temperature in vessel 1, monitored with the probe, raised up to 160-165°C when reaching the full power of 500 W. The temperature profiles, monitored with the IR sensor, looks quite similar (except the one of the blank samples, which has a lower maximum temperature).

Figure 1 Digestion profile of the soil samples using HF:HNO₃:HCl (run 1) – power controlled program

In Figure 3 and Figure 4 the digestion profiles of the soil samples using HBF_4 (run 1 and run 2, respectively) with a power controlled program are shown. The temperature in vessel 1, monitored with the probe, raised up to 120-150°C when reaching the full power of 500 W. The temperature profiles, monitored with the IR sensor, looks quite similar.

Figure 3 Digestion profile of the soil samples using HBF₄ (run 1) – power controlled program

Figure 4 Digestion profile of the soil samples using HBF_4 (run 2) – power controlled program

In Figure 5 the digestion profiles of the soil samples using HBF_4 (run 1) with a temperature controlled program are shown. The temperature is raised up to 175°C, which can be verified with the probe in vessel 1. All the IR measurement shows comparable profiles with temperatures up to 160-175°C (except the one of the blank samples, which has a lower maximum temperature). The power increased up to about 750 W when reaching the max. temperature of 175°C and then drops further to about 400 W. Also the pressure remains below 20 bar.

Figure 5 Digestion profile of the soil samples using HBF_4 (run 1) – temperature controlled program

3.5. RESULTS OF THE VLAREBO ELEMENTS

According to the Flemish regulation on soil remediation and protection regulations (VLAREBO) 8 elements are defined as critical contaminants (towards human and environmental toxicity): As, Cd, Cr, Cu, Pb, Ni, Zn and Hg. Therefore, these elements are of major interest to determine in soils.

In the following paragraphs the results obtained with the different digestion procedures are presented per element. Duplicate samples (including digestion) are marked with 'b'. The reference method is always indicated as 'HF power', while the alternative methods are indicated as 'HBF₄ power' and HBF₄ temp'. <u>Note that the evaluation is based on the comparison of single measurement results.</u>

An overview of all elements is presented in paragraph 3.9 on page 41.

The individual results for all samples, parameters and digestions are compiled in Annex A.

3.5.1. ELEMENT ARSENIC

In Figure 6 the As results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the As results with the 3 digestion methods was calculated per sample and are presented in Figure 7. From all samples analysed the CV_R is situated below 20% and in most cases below 10%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 6.3%. The high CV_R was obtained on the QC sample with a concentration level of less than 10 mg/kg dm.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 6.5 and 4.4% difference is observed (see Figure 8).

Figure 6 As results of the soil samples using the 3 digestion methods

Figure 7 % CV_R of the 3 As results by sample

Figure 8 Difference between the reference method for As and the 2 alternative methods

3.5.2. ELEMENT CADMIUM

In Figure 9 the Cd results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Cd results with the 3 digestion methods was calculated per sample and are presented in Figure 10. From all samples analysed the CV_R is situated below 10%. The pooled CV_R of the 12 samples (including duplicate and QC samples) amounted 3.9%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively -3.2 and 1.0% difference is observed (see Figure 11).

Figure 9 Cd results of the soil samples using the 3 digestion methods

Figure 10 % CV_R of the 3 Cd results by sample

Figure 11 Difference between the reference method for Cd and the 2 alternative methods

3.5.3. ELEMENT CHROMIUM

In Figure 12 the Cr results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Cr results with the 3 digestion methods was calculated per sample and are presented in Figure 13. From all samples analysed the CV_R is situated below 10%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 4.1%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 2.6 and -1.5% difference is observed (see Figure 14).

Figure 12 Cr results of the soil samples using the 3 digestion methods

Figure 13 % CV_R of the 3 Cr results by sample

Figure 14 Difference between the reference method for Cr and the 2 alternative methods

3.5.4. ELEMENT CUPPER

In Figure 15 the Cu results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Cu results with the 3 digestion methods was calculated per sample and are presented in Figure 16. From all samples analysed the CV_R is situated below 12%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 4.7%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 3.2 and 1.7% difference is observed (see Figure 17).

Figure 15 Cu results of the soil samples using the 3 digestion methods

Figure 16 % CV_R of the 3 Cu results by sample

Figure 17 Difference between the reference method for Cu and the 2 alternative methods

3.5.5. ELEMENT LEAD

In Figure 18 the Pb results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Pb results with the 3 digestion methods was calculated per sample and are presented in Figure 19. From all samples analysed the CV_R is situated below 15%. In most cases even below 6%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 4.7%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively -3.2 and -2.3% difference is observed (see Figure 20). The highest difference (24%) was observed on a sample with a low concentration of less than 10 mg/kg dm.

Figure 18 Pb results of the soil samples using the 3 digestion methods

Figure 19 % CV_R of the 3 Pb results by sample

Figure 20 Difference between the reference method for Pb and the 2 alternative methods

3.5.6. ELEMENT NICKEL

In Figure 21 the Ni results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Ni results with the 3 digestion methods was calculated per sample and are presented in Figure 22. From all samples analysed the CV_R is situated below 18%. In most cases even below 6%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 4.7%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively -3.5 and 1.3% difference is observed (see Figure 23).

Figure 21 Ni results of the soil samples using the 3 digestion methods

Figure 22 % CV_R of the 3 Ni results by sample

Figure 23 Difference between the reference method for Ni and the 2 alternative methods

3.5.7. ELEMENT ZINC

In Figure 24 the Zn results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Zn results with the 3 digestion methods was calculated per sample and are presented in Figure 25. From all samples analysed the CV_R is situated below 10%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 3.1%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively -2.1 and -0.6% difference is observed (see Figure 26).

Figure 24 Zn results of the soil samples using the 3 digestion methods

Figure 25 % CV_R of the 3 Zn results by sample

Figure 26 Difference between the reference method for Zn and the 2 alternative methods

3.5.8. ELEMENT MERCURY

In Figure 27 the Hg results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Hg results with the 3 digestion methods was calculated per sample and are presented in Figure 28. From all samples analysed the CV_R is situated below 10%. The pooled CV_R of the 13 samples (including duplicate and QC samples) amounted 4.5%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 3.8 and 4.5% difference is observed (see Figure 29).

Figure 27 Hg results of the soil samples using the 3 digestion methods

Figure 28 % CV_R of the 3 Hg results by sample

Figure 29 Difference between the reference method for Hg and the 2 alternative methods

3.6. Results of the other trace elements

3.6.1. ELEMENT ANTIMONY

In Figure 30 the Sb results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Sb results with the 3 digestion methods was calculated per sample and are presented in Figure 31. From all samples analysed, except for sample 5, the CV_R is situated below 20%. For sample 5 it amounts 50%, which is attributed to the relative low concentration of Sb present in the sample. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 13%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 2.3 and 3.0% difference is observed (see Figure 32). The highest differences are observed on the samples with concentration levels of less than 10 mg/kg dm.

Figure 30 Sb results of the soil samples using the 3 digestion methods

Figure 31 % CV_R of the 3 Sb results by sample

Figure 32 Difference between the reference method for Sb and the 2 alternative methods

3.6.2. ELEMENT BARIUM

In Figure 33 the Ba results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Ba results with the 3 digestion methods was calculated per sample and are presented in Figure 34. From all samples analysed the CV_R is situated below 8%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 3.6%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 0.0 and 0.9% difference is observed (see Figure 35).

Figure 33 Ba results of the soil samples using the 3 digestion methods

Figure 34 % CV_R of the 3 Ba results by sample

Figure 35 Difference between the reference method for Ba and the 2 alternative methods

3.6.3. ELEMENT COBALT

In Figure 36 the Co results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Co results with the 3 digestion methods was calculated per sample and are presented in Figure 37. From all samples analysed the CV_R is situated below 18%. The highest deviation is observed on the sample with a concentration of less than 10 mg/kg dm. Samples with a higher concentration above 10 mg/kg dm have a CV_R of less than 10%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 5.0%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively -1.0 and -3.4% difference is observed (see Figure 38).

Figure 36 Co results of the soil samples using the 3 digestion methods

Figure 37 % CV_R of the 3 Co results by sample

Figure 38 Difference between the reference method for Co and the 2 alternative methods

3.6.4. ELEMENT MOLYBDENUM

In Figure 39 the Mo results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Mo results with the 3 digestion methods was calculated per sample and are presented in Figure 40. From all samples analysed the CV_R is situated below 25%. The highest deviations are observed on samples 2, 3 and 4 with a concentration of Mo below 10 mg/kg dm. The pooled CV_R of the 13 samples (including duplicate and QC samples) amounted 7.9%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 4.1 and 3.3% difference is observed (see Figure 41).

Figure 39 Mo results of the soil samples using the 3 digestion methods

Figure 40 % CV_R of the 3 Mo results by sample

Figure 41 Difference between the reference method for Mo and the 2 alternative methods

3.6.5. ELEMENT TIN

In Figure 42 the Sn results of the different soil samples and the quality control (QC) samples are presented.

The coefficient of variation (CV_R) of the Sn results with the 3 digestion methods was calculated per sample and are presented in Figure 43. From all samples analysed the CV_R is situated below 60%. In most case even less than 10%. The highest deviation is observed for sample 1 and sample 1b, with a lower Sn value for the reference method compared to the alternative methods. The pooled CV_R of the 12 samples (including duplicate and QC samples) amounted 13 %.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively -5.5 and 0.3% difference is observed (see Figure 44).

Figure 42 Sn results of the soil samples using the 3 digestion methods

Figure 43 % CV_R of the 3 Sn results by sample

Figure 44 Difference between the reference method for Sn and the 2 alternative methods

3.6.6. ELEMENT VANADIUM

In Figure 45 the V results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the V results with the 3 digestion methods was calculated per sample and are presented in Figure 46. From all samples analysed the CV_R is situated below 6%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 2.5%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively -2.9 and -0.6% difference is observed (see Figure 47).

Figure 45 V results of the soil samples using the 3 digestion methods

Figure 46 % CV_R of the 3 V results by sample

Figure 47 Difference between the reference method for V and the 2 alternative methods

3.7. RESULTS OF MAJOR ELEMENTS

3.7.1. ELEMENT SODIUM

In Figure 48 the Na results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Na results with the 3 digestion methods was calculated per sample and are presented in Figure 49. From all samples analysed the CV_R is situated below 4%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 2.1%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively -1.1 and 2.0% difference is observed (see Figure 50).

Figure 48 Na results of the soil samples using the 3 digestion methods

Figure 49 % CV_R of the 3 Na results by sample

Figure 50 Difference between the reference method for Na and the 2 alternative methods

3.7.2. ELEMENT MAGNESIUM

In Figure 51 the Mg results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Mg results with the 3 digestion methods was calculated per sample and are presented in Figure 52. From all samples analysed the CV_R is situated below 10%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 5.2%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively -4.9 and 1.5% difference is observed (see Figure 53).

Figure 51 Mg results of the soil samples using the 3 digestion methods

Figure 52 % CV_R of the 3 Mg results by sample

Figure 53 Difference between the reference method for Mg and the 2 alternative methods

3.7.3. ELEMENT ALUMINIUM

In Figure 54 the AI results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the AI results with the 3 digestion methods was calculated per sample and are presented in Figure 55. From all samples analysed the CV_R is situated below 12%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 6.5%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 0.3 and 6.9% difference is observed (see Figure 56).

Figure 54 AI results of the soil samples using the 3 digestion methods

Figure 55 % CV_R of the 3 Al results by sample

Figure 56 Difference between the reference method for Al and the 2 alternative methods

3.7.4. ELEMENT POTASSIUM

In Figure 57 the K results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the K results with the 3 digestion methods was calculated per sample and are presented in Figure 58. From all samples analysed the CV_R is situated below 9%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 3.9%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively -1.7 and 2.8% difference is observed (see Figure 59).

Figure 57 K results of the soil samples using the 3 digestion methods

Figure 58 % CV_R of the 3 K results by sample

Figure 59 Difference between the reference method for K and the 2 alternative methods

3.7.5. ELEMENT CALCIUM

In Figure 60 the Ca results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Ca results with the 3 digestion methods was calculated per sample and are presented in Figure 61. From all samples analysed the CV_R is situated below 10%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 4.0%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively -0.8 and 4.8% difference is observed (see Figure 62).

Figure 60 Ca results of the soil samples using the 3 digestion methods

Figure 61 % CV_R of the 3 Ca results by sample

Figure 62 Difference between the reference method for Ca and the 2 alternative methods

3.7.6. Element titanium

In Figure 63 the Ti results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Ti results with the 3 digestion methods was calculated and are presented in Figure 64. From all samples analysed the CV_R is situated below 30%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 14%. For the Ti results differences are observed in comparison with the reference method, especially when applying the HBF₄ digestion with the power controlled microwave digestion. This digestion method results in a systematic underestimation of about 20%. When applying the HBF₄ digestion with the temperature controlled microwave digestion, this effect is not so pronounced present.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 23 and 5.7% difference is observed (see Figure 65).

Figure 63 Ti results of the soil samples using the 3 digestion methods

Figure 64 % CV_R of the 3 Ti results by sample

Figure 65 Difference between the reference method for Ti and the 2 alternative methods

3.7.7. ELEMENT MANGANESE

In Figure 66 the Mn results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Mn results with the 3 digestion methods was calculated per sample and are presented in Figure 67. From all samples analysed the CV_R is situated below 8%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 3.7%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively -4.5 and 0.7% difference is observed (see Figure 68).

Figure 66 Mn results of the soil samples using the 3 digestion methods

Figure 67 % CV_R of the 3 Mn results by sample

Figure 68 Difference between the reference method for Mn and the 2 alternative methods

3.7.8. ELEMENT IRON

In Figure 69 the Fe results of the different soil samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Fe results with the 3 digestion methods was calculated per sample and are presented in Figure 70. From all samples analysed the CV_R is situated below 5%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 1.4%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively -0.2 and -1.2% difference is observed (see Figure 71).

Figure 69 Fe results of the soil samples using the 3 digestion methods

Figure 70 % CV_R of the 3 Fe results by sample

Figure 71 Difference between the reference method for Fe and the 2 alternative methods

3.8. EVALUATION OF THE TRUENESS OF THE QC SAMPLES IN THE DIGESTION RUN OF THE SOIL SAMPLES

During the digestion process two control samples were analysed together with the other soil samples. As control samples a round robin soil sample (SETOC 701) – QC1 - , distributed by Wageningen, and a certified soil samples (NIST 2711) – QC 2 – was included in the analytical process. For each digestion procedure, 2 digestion runs were carried out. The SETOC 701 control sample was always included in the first run of the digestion, the NIST 2711 was included in the second run. The obtained results and their recovery are presented in Table 2.

As reference value for the SETOC 701 QC sample, data of the available control chart were used. These control chart data were obtained after digestion with HF:HNO₃:HCl using a power controlled digestion programme. The reference value was derived on the basis of digestions with 4 ml HF (see remark) in stead of 2 ml HF. Maybe this might be the reason why the recovery for Cr is for the 3 applied digestion methods (with 2 ml of HF or HBF₄) limited to about 90%.

Remark: To avoid gel formation in case Si is present in a high content (\pm 30%), 4 ml of HF is added for digestion.

Note that the performance check is based on the comparison of single measurement results.

Legend:

- HF power: digestion using HF:HNO₃:HCl with power controlled digestion procedure
- HBF₄ power: digestion using HBF₄ with power controlled digestion procedure
- HBF₄ temp: digestion using HBF₄ with temperature controlled digestion procedure

	Digestion	QC1	Ref.value	Recovery	Nist 2711	Ref. value	Recovery
	procedure	mg/kg dm	mg/kg dm	%	mg/kg dm	mg/kg dm	%
As	HF power	35	33,6	105%	104	105	100%
	HBF4 power	35	33,6	103%	104	105	99%
	HBF4 temp	35	33,6	103%	100	105	95%
Cd	HF power	2,5	2,6	95%	39	41,7	95%
	HBF4 power	2,5	2,6	94%	41	41,7	98%
	HBF4 temp	2,5	2,6	96%	40	41,7	96%
Cr	HF power	121	131,8	92%	42	47	89%
	HBF4 power	117	131,8	89%	43	47	91%
	HBF4 temp	122	131,8	92%	42	47	89%
Cu	HF power	103	103,9	99%	119	114	105%
	HBF4 power	100	103,9	96%	115	114	101%
	HBF4 temp	101	103,9	97%	116	114	102%
Pb	HF power	167	171,5	97%	1102	1162	95%
	HBF4 power	167	171,5	98%	1124	1162	97%
	HBF4 temp	170	171,5	99%	1134	1162	98%
Ni	HF power	46	46,6	98%	21	20,6	101%
	HBF4 power	45	46,6	98%	22	20,6	106%
	HBF4 temp	45	46,6	97%	20	20,6	99%
Zn	HF power	487	515	95%	365	350,1	104%
	HBF4 power	492	515	95%	381	350,4	109%
	HBF4 temp	490	515	95%	356	350,4	102%
Sb	HF power				22	19,4	115%
	HBF4 power				22	19,4	112%
	HBF4 temp				21	19,4	111%
Ва	HF power				698	726	96%
	HBF4 power				681	726	94%
	HBF4 temp				657	726	90%
Со	HF power				9,3	10	93%
	HBF4 power				9,1	10	91%
	HBF4 temp				10	10	104%
Мо	HF power				1,7	1,6	105%
	HBF4 power				1,8	1,6	111%
	HBF4 temp				1,6	1,6	98%

Table 2 Overview of the performance of the QC samples

	Digestion	QC1	Ref.value	Recovery	Nist 2711	Ref. value	Recovery
	procedure	mg/kg dm	mg/kg dm	%	mg/kg dm	mg/kg dm	%
V	HF power				91	81,6	112%
	HBF4 power				94	81,6	115%
	HBF4 temp				91	81,6	112%
Na	HF power				11093	11400	97%
	HBF4 power				11403	11400	100%
	HBF4 temp				10630	11400	93%
Mg	HF power				9487	10500	90%
	HBF4 power				10041	10500	96%
	HBF4 temp				8828	10500	84%
Al	HF power				63365	65300	97%
	HBF4 power				64150	65300	98%
	HBF4 temp				55086	65300	84%
К	HF power				23068	24500	94%
	HBF4 power				23299	24500	95%
	HBF4 temp				22023	24500	90%
Са	HF power				27403	28800	95%
	HBF4 power				27876	28800	97%
	HBF4 temp				25820	28800	90%
Ті	HF power				2522	3060	82%
	HBF4 power				2067	3060	68%
	HBF4 temp				2388	3060	78%
Mn	HF power				638	638	100%
	HBF4 power				660	638	103%
	HBF4 temp				638	638	100%
Fe	HF power				27283	28900	94%
	HBF4 power				27721	28900	96%
	HBF4 temp				27800	28900	96%

Italic: indicative value

3.9. OVERVIEW OF ALL ELEMENTS

Per element and per sample the ratio was calculated between the alternative method (HBF₄ power or HBF₄ temp) and the reference method (HF power). The distribution for the different elements is presented by a Box and Whisker plot, as shown in Figure 72 till Figure 76. <u>Note that the evaluation is based on the comparison of single measurement results.</u>

Legend

- R1 Ratio HBF₄ acid digestion, power controlled versus HF digestion, power controlled
- R2 Ratio HBF₄ acid digestion, temperature controlled versus HF digestion, power controlled

For the elements As, Cd, Cr, Cu, Pb, Ni, Zn and Hg in soil samples the median values fluctuate around 1, indicating that comparable results are obtained with the reference method and the alternative methods. Globally, most of the data results in a ratio between 0.8 and 1.2.

Figure 72 Overview ratio alternative methods vs the reference method for the elements As, Cd,Cr and Cu in soil samples

Figure 73 Overview ratio alternative methods vs the reference method for the elements Pb, Ni, Zn and Hg in soil samples

For the other trace elements Sb, Ba, Co, Mo and V in soil samples the median values also fluctuate around 1, indicating a good correspondence. Most of the data results in a ratio between 0.8 and 1.2.

Figure 74 Overview ratio alternative methods vs the reference method for the elements Sb, Ba, Co, Mo and V in soil samples

For the major elements Na, Mg, Al, K, Ca, Ti, Mn and Fe in soil samples also a median ratio around 1 is obtained, except for the element Ti. Especially the results obtained with the 'HBF₄ power' method are significantly lower than with the reference method 'HF power'. Globally, with exception for Ti, most of the data are situated between a ratio of 0.8 and 1.1.

Figure 75 Overview ratio alternative methods vs the reference method for the elements Na, Mg, Al and K in soil samples

Figure 76 Overview ratio alternative methods vs the reference method for the elements Ca, Ti, Mn and Fe in soil samples

CHAPTER 4 DIGESTION OF WASTE SAMPLES

4.1. INTRODUCTION

In Flanders, soil and waste samples are digested using the same digestion method with HF:HNO₃:HCl. In case a soil sample is contaminated with several elements, it might be considered as a waste sample. Using the same digestion method, the obtained results can be verified towards the legislative values of soils as well as of waste.

Untill now waste samples were digested using an acid mixture of HF:HNO₃:HCl and a power controlled microwave digestion oven, according to the procedure describe in NBN EN 13656. In this study the following two items were evaluated:

- Evaluation of an alternative acid (one-step digestion) as replacement for two-steps digestion with HF + H₃BO₃
 This involves a one-step digestion, while maintaining the same power of digestion of the silicate matrix, by using HBF₄ (replacing HF with H₃BO₃). In addition, the use of HBF₄ is for safety reasons preferred over HF.
- Evaluation of temperature controlled microwave systems as an addition to power controlled microwave systems
 Comparison of the CMA/2/II/A.3 procedure using power controlled microwave oven versus temperature controlled digestion. The evaluation was performed using the HBF₄ acid digestion.

4.2. SELECTED WASTE SAMPLES

A different range of waste samples were selected for evalution of the digestion procedure, among which also waste samples used in the validation study of EN 13656 and EN 13657, performed in 1999. The following waste samples were selected:

- 20143957: Shredder (< 1 mm)
- 20143958: Sewage sludge
- 20143959: Bottom ash
- 20143960: Sewage sludge
- 20143961: Sample CEN 6/99 Fly ash CW6
- 20143962: Sample CEN 7/99 Bottom ash CW4
- 20143963: Sample CEN 8/99 Ink waste CW12
- 20143964: Sample CEN 9/99 Sewage sludge of electronic waste SL 11
- 20143965: Sample CEN 10/99 Sewage sludge BCR 146R (certified reference sample)
- 20143966: Sample BCR 176R Incineration ash powder (replaces CEN 11/99 BCR 176: same matrix, other reference values)

The samples from 20143961 to 20143965 were the same samples used in the validation trial of EN 13656 and 13657, and they were already dried and fine ground. Sample 20143966 is a certified reference material which was also used in the validation trial of 1999, but now the successor was applied resulting in a sample with a similar matrix but with different concentrations. Before digestion, only a short drying period of about 4 hrs at 105°C was applied. The shredder sample was

dried at 105°C and fine ground with a cutting mill to a particle size < 1 mm. The samples from 20143958 to 20143960 were dried at 105°C overnight and fine ground with the planetary ball mill (according to EN 13656 < 250 μ m). As control samples a round robin soil sample (SETOC 701) – QC1 - , distributed by Wageningen, and a certified soil samples (NIST 2711) – QC 2 – were included in the analytical process.

4.3. DESCRIPTION DIGESTION PROCEDURE AND ICP-AES/CV-AFS MEASUREMENTS

All digestions were performed using an Anton Paar microwave system (Multiwave 3000). The system is equipped with an immersing temperature probe with integrated pressure sensor which is positioned in one reference vessel and infrared sensors are located underneath the rotor to simultaneously measure the temperature and pressure of each vessel. The system is capable of performing digestions using a power controlled or a temperature controlled microwave programme.

The digested solutions were analysed with ICP-AES^e (Perkin Elmer, Optima 3000) for the determination of the elements. The calibration was set-up with matrix-matched standards fot both axial and radial view. After digestion a dilution of at least a factor of 5 was applied, except for the determination of element concentrations nearby the reporting limit. As internal standard Rh was used and the suppression of the internal standard was for all samples limited to maximum 10%. Data obtained in axial view were Rh corrected, while no Rh correction was applied on data measured in radial view.

Mercury was determined with CV-AFS^f (Leeman, HYDRA AF Automated Hg-analyzer).

4.3.1. DIGESTION WITH HF:HNO3:HCL AND POWER CONTROLLED MICROWAVE DIGESTION (HF POWER)

About 0.5 g of sample was weighed into the vessel. Then the following acids were separately added: 6 ml HCl, 2 ml HNO₃ and 2 ml HF. The digestion vessel was placed into the microwave unit (8 positions) and the following digestion process was applied:

	Time (min)	Power (W)
Stap 1	2	250
Stap 2	2	0
Stap 3	5	250
Stap 4	5	400
Stap 5	5	500

At the end of the programme the vessels were cooled down to room temperature. Subsequently, 22 ml of 4% m/m of boric acid was added and the vessels were placed in the microwave unit applying the following process:

Time (min)	Power (W)
3	300

After cooling the digested solution was transferred to a volumetric flask and filled up to 100 ml with ultrapure water.

^e Inductively coupled plasma atomic emission spectrometry

^f Cold vapour atomic fluorescence spectrometry

Each batch contains 1 blank, 1 control sample (QC1 or QC2), 5 samples and 1 duplo sample.

4.3.2. DIGESTION WITH HBF₄ AND POWER CONTROLLED MICROWAVE DIGESTION (HBF₄ POWER)

About 0.5 g of sample was weighed into the vessel. Then the following acids were separately added: 6 ml HCl, 2 ml HNO₃ and 2 ml HBF₄ and the following digestion process was applied:

Time (min)	Power (W)
2	250
2	0
5	250
5	400
5	500

After cooling the digested solution was transferred to a volumetric flask and filled up to 100 ml with ultrapure water.

Each batch contains 1 blank, 1 control sample (QC1 or QC2), 5 samples and 1 duplo sample.

4.3.3. DIGESTION WITH HBF₄ AND TEMPERATURE CONTROLLED MICROWAVE DIGESTION (HBF₄ TEMP)

About 0.5 g of sample was weighed into the vessel. The acids 6 ml HCl, 2 ml HNO₃ and 2 ml HBF₄ were separately added. The digestion vessel was placed into the microwave unit (8 positions) and the temperature was raised with a heating rate of 15°C min⁻¹ to 175°C and remained at 175°C for 10 minutes. After cooling the digested solution was transferred to a volumetric flask and filled up to 100 ml with ultrapure water.

Each batch contains 1 blank, 1 control sample (QC1 or QC2), 5 samples and 1 duplo sample.

4.4. EVALUATION OF THE DIGESTION PROCESS

As the system is equipped with an immersing temperature probe with integrated pressure sensor in the first reference vessel and infrared sensors to measure the temperature of each vessel, is was interesting to follow up the digestion profiles during the complete cycle.

In Figure 77 and Figure 78 the digestion profiles of the waste samples using HF:HNO₃:HCl (run 1 and run 2, respectively) with a power controlled program are shown. The temperature in vessel 1, monitored with the probe, raised up to 145-150°C when reaching the full power of 500 W. The temperature profiles, monitored with the IR sensor, looks quite similar (except the one of the blanc samples, which has a lower maximum temperature).

Figure 77 Digestion profile of the waste samples using HF:HNO₃:HCl (run 1) – power controlled program

Figure 78 Digestion profile of the waste samples using HF:HNO₃:HCl (run 2) – power controlled program

In Figure 79 and Figure 80 the digestion profiles of the waste samples using HBF_4 (run 1 and run 2, respectively) with a power controlled program are shown. The temperature in vessel 1, monitored with the probe, raised up to 140-160°C when reaching the full power of 500 W. The temperature profiles, monitored with the IR sensor, looks quite similar (except the one of the blanc samples, which has a lower maximum temperature).

Figure 79 Digestion profile of the waste samples using HBF_4 (run 1) – power controlled program

Figure 80 Digestion profile of the waste samples using HBF₄ (run 2) – power controlled program

In Figure 81 the digestion profile of the waste samples using HBF_4 (run 1) with a temperature controlled program are shown. In run 1 the temperature is raised up to 175°C. All the IR measurement shows comparable profiles with temperatures between 140 and 180°C. The power increased up to about 1100 W and then drops to about 400 W. In the meanwhile the pressure is increased up to 25 bar when reaching the max. power of 1100 W.

Figure 81 Digestion profile of the soil samples using HBF_4 (run 1) – temperature controlled program

4.5. RESULTS OF THE VLAREMA ELEMENTS

The EU Directive 99/31/EC on the landfill of waste and the EU Directive 2000/76/EC on the incineration of waste several elements is implemented in the Flemish regulation on sustainable management of material cycles and waste (VLAREMA). In VLAREMA 4bis (draft dec 2013) the following elements are of interest: As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, Tl, Sb, Co, V, Sn, Ba and Mo. The element Mn is also treated in this chapter.

In the following paragraphs the results obtained with the different digestion procedures are presented per element. Duplicate samples (including digestion) are marked with 'b'. The reference method is always indicated as 'HF power', while the alternative methods are indicated as 'HBF₄ power' and HBF₄ temp'. <u>Note that the evaluation is based on the comparison of single measurement results.</u>

The evaluation of the different samples, selected from the validation study of EN 13656:2002, is per sample described in paragraphs 4.8 till 4.13 starting on page 83. An overview of all elements is presented in paragraph 4.15 on page 95.

The individual results for all samples, parameters and digestions are compiled in Annex B.

4.5.1. ELEMENT ARSENIC

In Figure 82 the As results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the As results with the 3 digestion methods was calculated per sample and are presented in Figure 83. From all samples analysed the CV_R is situated below 18%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 8.7%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 2.5 and -4.5% difference is observed (see Figure 84).

Figure 82 As results of the waste samples using the 3 digestion methods

Figure 83 % CV_R of the 3 As results by sample

Figure 84 Difference between the reference method for As and the 2 alternative methods

4.5.2. ELEMENT CADMIUM

In Figure 85 the Cd results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Cd results with the 3 digestion methods was calculated per sample and are presented in Figure 86. From all samples analysed the CV_R is situated below 8%. The pooled CV_R of the 11 samples (including duplicate and QC samples) amounted 3.8%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 2.2 and -1.1% difference is observed (see Figure 87).

Figure 85 Cd results of the waste samples using the 3 digestion methods

Figure 86 % CV_R of the 3 Cd results by sample

Figure 87 Difference between the reference method for Cd and the 2 alternative methods

4.5.3. ELEMENT CHROMIUM

In Figure 88 the Cr results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Cr results with the 3 digestion methods was calculated per sample and are presented in Figure 89. From all samples analysed the CV_R is situated below 20%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 7.0%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 2.1 and -4.8% difference is observed (see Figure 90).

Figure 88 Cr results of the waste samples using the 3 digestion methods

Figure 89 % CV_R of the 3 Cr results by sample

Figure 90 Difference between the reference method for Cr and the 2 alternative methods

4.5.4. ELEMENT CUPPER

In Figure 91 the Cu results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Cu results with the 3 digestion methods was calculated per sample and are presented in Figure 92. From all samples analysed the CV_R is situated below 25%, for most of the samples even less than 10%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 6.3%. It should be noted that for sample 1 (shredder) the measurement deviation is larger compared to the other samples. This is also observed for other elements e.g. Mn, Mo, Na, Sn, Ti, and probably attributed to the heterogeneity of the sample rather than to the digestion procedure. Especially with a particle size of < 1 mm a larger measurement deviation can be expected.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 0.4 and -1.2% difference is observed (see Figure 93).

Figure 91 Cu results of the waste samples using the 3 digestion methods

Figure 92 % CV_R of the 3 Cu results by sample

Figure 93 Difference between the reference method for Cu and the 2 alternative methods

4.5.5. ELEMENT LEAD

In Figure 94 the Pb results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Pb results with the 3 digestion methods was calculated per sample and are presented in Figure 95. From all samples analysed the CV_R is situated below 10%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 3.1%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 0.3 and 0.1% difference is observed (see Figure 96).

Figure 94 Pb results of the waste samples using the 3 digestion methods

Figure 95 % CV_R of the 3 Pb results by sample

Figure 96 Difference between the reference method for Pb and the 2 alternative methods

4.5.6. ELEMENT NICKEL

In Figure 97 the Ni results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Ni results with the 3 digestion methods was calculated per sample and are presented in Figure 98. From all samples analysed the CV_R is situated below 12%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 5.9%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 1.6 and -2.3% difference is observed (see Figure 99).

Figure 97 Ni results of the waste samples using the 3 digestion methods

Figure 98 % CV_R of the 3 Ni results by sample

Figure 99 Difference between the reference method for Ni and the 2 alternative methods
4.5.7. ELEMENT ZINC

In Figure 100 the Zn results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Zn results with the 3 digestion methods was calculated per sample and are presented in Figure 101. From all samples analysed the CV_R is situated below 12%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 4.5%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 1.1 and -1.6% difference is observed (see Figure 102).

Figure 100 Zn results of the waste samples using the 3 digestion methods

Figure 101 % CV_R of the 3 Zn results by sample

Figure 102 Difference between the reference method for Zn and the 2 alternative methods

4.5.8. ELEMENT MERCURY

In Figure 103 the Hg results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Hg results with the 3 digestion methods was calculated per sample and are presented in Figure 104. From all samples analysed the CV_R is situated below 12%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 5.1%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 0.6 and -3.7% difference is observed (see Figure 105).

Figure 103 Hg results of the waste samples using the 3 digestion methods

Figure 104 % CV_R of the 3 Hg results by sample

Figure 105 Difference between the reference method for Hg and the 2 alternative methods

4.5.9. ELEMENT ANTIMONY

In Figure 106 the Sb results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Sb results with the 3 digestion methods was calculated per sample and are presented in Figure 107. From all samples analysed the CV_R is situated below 25%. The highest CV_R values (e.g. sample 3 and 4) were obtained on samples with a concentration level around or lower than 10 mg/kg dm. The pooled CV_R of the 13 samples (including duplicate and QC samples) amounted 11%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 6.1 and 0.0% difference is observed (see Figure 108).

Figure 106 Sb results of the waste samples using the 3 digestion methods

Figure 107 % CV_R of the 3 Sb results by sample

Figure 108 Difference between the reference method for Sb and the 2 alternative methods

4.5.10. ELEMENT BARIUM

In Figure 109 the Ba results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Ba results with the 3 digestion methods was calculated per sample and are presented in Figure 110. From all samples analysed, except sample 7, the CV_R is situated below 25%. For sample 4 a high deviation between the 3 methods is observed, especially the HF power method results in a higher measured concentration compared to the 2 alternative methods. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 14%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 2.6 and -6.5% difference is observed (see Figure 111).

Figure 109 Ba results of the waste samples using the 3 digestion methods

Figure 110 % CV_R of the 3 Ba results by sample

Figure 111 Difference between the reference method for Ba and the 2 alternative methods

4.5.11. ELEMENT COBALT

In Figure 112 the Co results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Co results with the 3 digestion methods was calculated per sample and are presented in Figure 113. From all samples analysed, except for sample 9, the CV_R is situated below 13%. For sample 9 with a low concentration level of less than 5 mg/kg dm a CV_R of 22% was obtained. The pooled CV_R of the 13 samples (including duplicate and QC samples) amounted 8.1%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 1.8 and -3.6% difference is observed (see Figure 114).

Figure 112 Co results of the waste samples using the 3 digestion methods

Figure 113 % CV_R of the 3 Co results by sample

Figure 114 Difference between the reference method for Co and the 2 alternative methods

4.5.1. ELEMENT MANGANESE

In Figure 115 the Mn results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Mn results with the 3 digestion methods was calculated per sample and are presented in Figure 116. From all samples analysed the CV_R is situated below 12%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 5.2%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 1.2 and -3.8% difference is observed (see Figure 117).

Figure 115 Mn results of the waste samples using the 3 digestion methods

Figure 116 % CV_R of the 3 Mn results by sample

Figure 117 Difference between the reference method for Mn and the 2 alternative methods

4.5.2. ELEMENT MOLYBDENUM

In Figure 118 the Mo results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Mo results with the 3 digestion methods was calculated per sample and are presented in Figure 119. From all samples analysed the CV_R is situated below 14%. The pooled CV_R of the 12 samples (including duplicate and QC samples) amounted 7.4%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 4.8 and -5.8% difference is observed (see Figure 120).

Figure 118 Mo results of the waste samples using the 3 digestion methods

Figure 119 % CV_R of the 3 Mo results by sample

Figure 120 Difference between the reference method for Mo and the 2 alternative methods

4.5.3. ELEMENT SELENIUM

In Figure 121 the Se results of the different waste samples are presented. Only 4 samples contained measurable value of Se.

The % coefficient of variation (CV_R) of the Se results with the 3 digestion methods was calculated per sample and are presented in Figure 122. From the 4 samples the CV_R is situated below 13%. The pooled CV_R of the 4 samples (including duplicate and QC samples) amounted 7.6%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively -8.2 and -2.6% difference is observed (see Figure 123).

Figure 121 Se results of the waste samples using the 3 digestion methods

Figure 122 % CV_R of the 3 Se results by sample

Figure 123 Difference between the reference method for Se and the 2 alternative methods

4.5.4. ELEMENT TIN

In Figure 124 the Sn results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Sn results with the 3 digestion methods was calculated per sample and are presented in Figure 125. From all samples analysed, except sample 1b, the CV_R is situated below 16%. A higher value of 35% was obtained of the duplicate sample 1b – a shredder < 1 mm - (note that sample 1 had a CV_R of 10%). The pooled CV_R of the 10 samples (including duplicate and QC sample) amounted 9.9%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 3.8 and 2.0% difference is observed (see Figure 126).

Figure 124 Sn results of the waste samples using the 3 digestion methods

Figure 125 % CV_R of the 3 Sn results by sample

Figure 126 Difference between the reference method for Sn and the 2 alternative methods

4.5.5. ELEMENT VANADIUM

In Figure 127 the V results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the V results with the 3 digestion methods was calculated per sample and are presented in Figure 128. From all samples analysed the CV_R is situated below 14%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 6.5%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 1.4 and -5.3% difference is observed (see Figure 129).

Figure 127 V results of the waste samples using the 3 digestion methods

Figure 128 % CV_R of the 3 V results by sample

Figure 129 Difference between the reference method for V and the 2 alternative methods

4.6. RESULTS OF MAJOR ELEMENTS

4.6.1. ELEMENT SODIUM

In Figure 130 the Na results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Na results with the 3 digestion methods was calculated per sample and are presented in Figure 131. From all samples analysed the CV_R is situated below 15%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 5.8%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively -3.9 and -5.1% difference is observed (see Figure 132).

Figure 130 Na results of the waste samples using the 3 digestion methods

Figure 131 % CV_R of the 3 Na results by sample

Figure 132 Difference between the reference method for Na and the 2 alternative methods

4.6.2. ELEMENT MAGNESIUM

In Figure 133 the Mg results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Mg results with the 3 digestion methods was calculated per sample and are presented in Figure 134. From all samples analysed the CV_R is situated below 14%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 4.3%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively -1.2 and 0.8% difference is observed (see Figure 135).

Figure 133 Mg results of the waste samples using the 3 digestion methods

Figure 134 % CV_R of the 3 Mg results by sample

Figure 135 Difference between the reference method for Mg and the 2 alternative methods

4.6.3. ELEMENT ALUMINIUM

In Figure 136 the AI results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the AI results with the 3 digestion methods was calculated per sample and are presented in Figure 137. From all samples analysed the CV_R is situated below 14%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 4.7%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively -0.3 and 0.2% difference is observed (see Figure 138).

Figure 136 AI results of the waste samples using the 3 digestion methods

Figure 137 % CV_R of the 3 Al results by sample

Figure 138 Difference between the reference method for Al and the 2 alternative methods

4.6.4. ELEMENT POTASSIUM

In Figure 139 the K results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the K results with the 3 digestion methods was calculated per sample and are presented in Figure 140. From all samples analysed the CV_R is situated below 14%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 6.4%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively -4.7 and -7.2% difference is observed (see Figure 141).

Figure 139 K results of the waste samples using the 3 digestion methods

Figure 140 % CV_R of the 3 K results by sample

Figure 141 Difference between the reference method for K and the 2 alternative methods

4.6.5. ELEMENT CALCIUM

In Figure 142 the Ca results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Ca results with the 3 digestion methods was calculated per sample and are presented in Figure 143. From all samples analysed, except sample 10, the CV_R is situated below 8%. Only sample 10 had a CV_R of 22% which is caused by a lower concentration obtained with the reference method in comparison with the 2 alternative methods. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 4.4%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively -0.8 and -0.1% difference is observed (see Figure 144).

Figure 142 Ca results of the waste samples using the 3 digestion methods

Figure 143 % CV_R of the 3 Ca results by sample

Figure 144 Difference between the reference method for Ca and the 2 alternative methods

4.6.6. ELEMENT TITANIUM

In Figure 145 the Ti results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Ti results with the 3 digestion methods was calculated per sample and are presented in Figure 146. The CV_R of all samples fluctuates between 8 and 50%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 22%. For the Ti results differences are observed for the alternative methods in comparison with the reference method, especially when applying the HBF₄ digestion with the power controlled microwave digestion. This digestion method results in a systematic underestimation of about 20%. When applying the HBF₄ digestion with the temperature controlled microwave digestion, this effect is less pronounced. A silimar profile was observed for the soil samples.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 33 and 9.3% difference is observed (see Figure 147).

Figure 145 Ti results of the waste samples using the 3 digestion methods

Figure 146 % CV_R of the 3 Ti results by sample

Figure 147 Difference between the reference method for Ti and the 2 alternative methods

4.6.7. ELEMENT IRON

In Figure 148 the Fe results of the different waste samples and the quality control (QC) samples are presented.

The % coefficient of variation (CV_R) of the Fe results with the 3 digestion methods was calculated per sample and are presented in Figure 149. From all samples analysed the CV_R is situated below 16%. The pooled CV_R of the 14 samples (including duplicate and QC samples) amounted 4.3%.

When calculating the % difference between the reference method (HF:HNO₃:HCl, power controlled digestion) and the 2 alternative methods (HBF₄, power controlled digestion and HBF₄, temperature controlled digestion), a median value of respectively 2.0 and -1.0% difference is observed (see Figure 150).

Figure 148 Fe results of the waste samples using the 3 digestion methods

Figure 149 % CV_R of the 3 Fe results by sample

Figure 150 Difference between the reference method for Fe and the 2 alternative methods

4.7. EVALUATION OF THE TRUENESS OF THE QC SAMPLES IN THE DIGESTION RUN OF THE WASTE SAMPLES

During the digestion process two control samples were analysed together with the other waste samples. As control samples a round robin soil sample (SETOC 701) – QC1 - , distributed by Wageningen, and a certified soil samples (NIST 2711) – QC 2 – was included in the analytical process. For each digestion procedure, 2 digestion runs were carried out. The SETOC 701 control sample was always included in the first run of the digestion, the NIST 2711 was included in the second run. The obtained results and their recovery are presented in Table 2.

As reference value for the SETOC 701 QC sample, data of the available control chart were used. These control chart data were obtained after digestion with HF:HNO₃:HCl using a power controlled digestion programme. The reference value was derived on the basis of digestions with 4 ml HF (see remark) in stead of 2 ml HF. Maybe this might be the reason why the recovery for Cr is for the 3 applied digestion methods (with 2 ml of HF or HBF₄) limited to about 90%.

Remark: To avoid gel formation in case Si is present in a high content (\pm 30%), 4 ml of HF is added for digestion.

Note that the performance check is based on the comparison of single measurement results.

Legend:

- HF power: digestion using HF:HNO₃:HCl with power controlled digestion procedure
- HBF₄ power: digestion using HBF₄ with power controlled digestion procedure
- HBF₄ temp: digestion using HBF₄ with temperature controlled digestion procedure

	Digestion	QC1	Ref.value	Recovery	Nist 2711	Ref. value	Recovery
	procedure	mg/kg dm	mg/kg dm	%	mg/kg dm	mg/kg dm	%
As	HF power	36	33,6	107%	105	105	100%
	HBF4 power	31	33,6	92%	115	105	110%
	HBF4 temp	38	33,6	114%	108	105	103%
Cd	HF power	2,4	2,6	93%	40	41,7	95%
	HBF4 power	2,5	2,6	96%	41	41,7	98%
	HBF4 temp	2,5	2,6	96%	42	41,7	101%
Cr	HF power	125	131,8	95%	42	47	89%
	HBF4 power	121	131,8	91%	40	47	85%
	HBF4 temp	133	131,8	101%	42	47	89%
Cu	HF power	104	103,9	100%	119	114	104%
	HBF4 power	103	103,9	99%	112	114	98%
	HBF4 temp	101	103,9	97%	115	114	101%
Pb	HF power	175	171,5	102%	1102	1162	95%
	HBF4 power	176	171,5	102%	1131	1162	97%
	HBF4 temp	180	171,5	105%	1193	1162	103%
Ni	HF power	47	46,6	101%	21	20,6	102%
	HBF4 power	43	46,6	92%	22	20,6	106%
	HBF4 temp	47	46,6	102%	24	20,6	116%
Zn	HF power	505	515	98%	365	350,1	104%
	HBF4 power	570	515	111%	344	350,4	98%
	HBF4 temp	527	515	102%	381	350,4	109%
Sb	HF power				22	19,4	114%
	HBF4 power				19	19,4	100%
	HBF4 temp				25	19,4	129%
Ва	HF power				698	726	96%
	HBF4 power				661	726	91%
	HBF4 temp				650	726	89%
Со	HF power				9,3	10	93%
	HBF4 power				10,1	10	101%
	HBF4 temp				10	10	100%
Мо	HF power				1,7	1,6	106%
	HBF4 power				1,6	1,6	101%
	HBF4 temp				1,8	1,6	114%
V	HF power				91	81,6	112%

Table 3 Overview of the performance of the QC samples

	Digestion	QC1	Ref.value	Recovery	Nist 2711	Ref. value	Recovery
	procedure	mg/kg dm	mg/kg dm	%	mg/kg dm	mg/kg dm	%
	HBF4 power				81	81,6	99%
	HBF4 temp				88	81,6	108%
Na	HF power				11093	11400	97%
	HBF4 power				11414	11400	100%
	HBF4 temp				11059	11400	97%
Mg	HF power				9487	10500	90%
	HBF4 power				9830	10500	94%
	HBF4 temp				9395	10500	89%
Al	HF power				63365	65300	97%
	HBF4 power				61460	65300	94%
	HBF4 temp				61783	65300	95%
К	HF power				23068	24500	94%
	HBF4 power				19506	24500	80%
	HBF4 temp				18720	24500	76%
Са	HF power				27403	28800	95%
	HBF4 power				27673	28800	96%
	HBF4 temp				27179	28800	94%
Ti	HF power				2522	3060	82%
	HBF4 power				2092	3060	68%
	HBF4 temp				2424	3060	79%
Mn	HF power				638	638	100%
	HBF4 power				653	638	102%
	HBF4 temp				688	638	108%
Fe	HF power				27283	28900	94%
	HBF4 power				27586	28900	95%
	HBF4 temp				28693	28900	99%

Italic: indicative value

4.8. OVERVIEW OF SAMPLE CEN 6/99 FLY ASH (20143961)

The results of sample CEN 6/99 (20143961) obtained with the 3 digestion methods were compared with the mean values of this sample obtained during the validation trial of EN 13656 in 1999. For each element and digestion method the recovery was calculated relative to the mean value included in EN 13656. The obtained results are presented in Table 4 and Figure 151. The figure also includes the reproducibility coefficient of variation (2 x CV_R , 95% confidence interval) of the validation trial.

The results obtained with the 'HF power' method are results obtained according to EN 13656. The other methods 'HBF₄ power' and HBF₄ temp' are modified methods. In general, the obtained results fit within the measurement uncertainty of the validation trial. Only for Ti deviated results are observed, applicable for all 3 digestion methods. There is no indication that different results are obtained with the reference method and the 2 alternative methods.

	EN 13656 Mean* mg/kg dm	EN 13656 Reprod. %	Sample HF power	Rec. %	Sample HBF4 power	Rec %	Sample HBF4 temp	Rec. %
Al	39207	42	40258	103%	47124	120%	46563	119%
Sb	1250	8,3	1151	92%	1126	90%	1061	85%
As	41	31	41	102%	42	105%	52	127%
Ва	1131	31	1020	90%	804	71%	1308	116%
Cd	435	7,7	424	98%	422	97%	425	98%
Ca	149675	6	127951	85%	141678	95%	143719	96%
Cr	528	11	469	89%	472	89%	558	106%
Со	31	32	25	81%	23	75%	26	83%
Fe	10060	10	10278	102%	10297	102%	10990	109%
К	65117	12	50225	77%	54941	84%	65463	101%
Cu	2076	5,7	1874	90%	1989	96%	1944	94%
Pb	10085	10	10259	102%	10084	100%	10363	103%
Mg	11461	7,6	9424	82%	11197	98%	11784	103%
Mn	541	3,4	519	96%	534	99%	545	101%
Мо	38	70	25	67%	24	64%	27	72%
Na	63630	4,8	52575	83%	61488	97%	63956	101%
Ni	78	16	70	90%	57	74%	69	89%
Se	31	44	31	100%	34	110%	34	112%
Sn	1458	15	1338	92%	1378	94%	1499	103%
Ti	9074	4,1	7320	81%	6760	74%	7992	88%
V	26	32	23	89%	22	85%	25	96%
Zn	30002	8,9	27529	92%	27254	91%	29303	98%
Hg	6,0	7,3	5,7	94%	5,8	96%	6,1	100%

Table 4 Results of CEN 6/99 Fly ash for the 3 digestion methods

*Result from the validation study of EN 13626:2002; considered as reference value

Figure 151 Results of CEN 6/99 Fly ash for the 3 digestion methods

4.9. OVERVIEW OF SAMPLE CEN 7/99 BOTTOM ASH (20143962)

The results of sample CEN 7/99 (20143962) obtained with the 3 digestion methods were compared with the mean values of this sample obtained during the validation trial of EN 13656 in 1999. For each element and digestion method the recovery was calculated towards the mean value included in EN 13656. The obtained results are presented in Table 5 and Figure 152. The figure also includes the reproducibility coefficient of variation (2 x CV_R, 95% confidence interval) of the validation trial.

The results obtained with the 'HF power' method are results obtained according to EN 13656. The other methods 'HBF₄ power' and HBF₄ temp' are modified methods. In general the obtained results fit within the measurement uncertainty of the validation trial. For the element Ti differences are observed between the reference method and the two alternative methods, similar as the previous sample. For Ba low recoveries are obtained, but also in the validation trial a high measurement deviation was obtained. Potassium doesn't fit within the (low) measurement uncertainty – note that in the CEN validation trial 14 of the 23 results were considered as outliers - , but it is probably due to the measurement rather than to the digestion method. There is no indication to declare that different results are obtained with the reference method and the 2 alternative methods.

	EN 13656	EN 13656	Sample	Rec.	Sample	Rec	Sample	Rec.
	Mean*	Reprod.	HF power	%	HBF4 power	%	HBF4 temp	%
	mg/kg dm	%						
Al	71894	37	82588	115%	82993	115%	80759	112%
Sb	318	12	308	97%	286	90%	304	95%
As	82	14	89	108%	88	107%	95	115%
Ва	2580	55	1033	40%	319	12%	563	22%
Cd	531	6,5	565	106%	538	101%	513	97%
Ca	66125	47	80344	122%	82776	125%	80227	121%
Cr	305	14	294	97%	251	82%	326	107%
Со	36	30	33	91%	29	79%	25	70%
Fe	20258	8,9	22052	109%	21310	105%	21307	105%
К	40426	1,6	38505	95%	40275	100%	33558	83%
Cu	1294	8,8	1315	102%	1248	96%	1411	109%
Pb	11526	9,3	11746	102%	11598	101%	10883	94%
Mg	17561	15	18309	104%	17854	102%	17079	97%
Mn	1301	7,1	1424	109%	1298	100%	1427	110%
Мо	52	45	48	91%	43	83%	48	92%
Na	28931	21	32912	114%	32913	114%	32398	112%
Ni	115	23	129	112%	108	94%	105	91%
Se	41	13	34	84%	36	89%	32	78%
Sn	2552	13	2659	104%	2447	96%	2344	92%
Ti	9090	11	7963	88%	5209	57%	5006	55%
V	42	24	49	116%	45	108%	50	119%
Zn	27791	8,7	26852	97%	27524	99%	25782	93%
Hg	31	8,2	33	105%	30	98%	33	106%

Table 5 Results of CEN 7/99 Bottom ash for the 3 digestion methods

*Result from the validation study of EN 13626:2002; considered as reference value

Figure 152 Results of CEN 7/99 Bottom ash for the 3 digestion methods

4.10. OVERVIEW OF SAMPLE CEN 8/99 INK WASTE (20143963)

The results of sample CEN 8/99 (20143963) obtained with the 3 digestion methods were compared with the mean values of this sample obtained during the validation trial of EN 13656 in 1999. For each element and digestion method the recovery was calculated towards the mean value included in EN 13656. The obtained results are presented in Table 6 and Figure 153. The figure also includes the reproducibility coefficient of variation (2 x CV_R , 95% confidence interval) of the validation trial.

The results obtained with the 'HF power' method are results obtained according to EN 13656. The other methods 'HBF₄ power' and HBF₄ temp' are modified methods. In general the obtained results fit within the measurement uncertainty of the validation trial. Only for Ti deviated results are observed, applicable for all 3 digestion methods. There is no indication to declare that different results are obtained with the reference method and the 2 alternative methods.

	EN 13656	EN 13656	Sample	Rec.	Sample	Rec	Sample	Rec.
	Mean*	Reprod.	HF power	%	HBF4 power	%	HBF4 temp	%
	mg/kg dm	%						
Al	2056	31	2163	105%	2252	110%	2292	111%
Sb	70	100	12	18%	9,4	14%	10	14%
As	7,5	25	6,1	82%	4,5	61%	6,2	82%
Ва	101	8,2	102	100%	90	89%	112	110%
Ca	111589	5,4	109974	99%	110620	99%	106958	96%
Cr	3638	7,6	3577	98%	3527	97%	3512	97%
Со	15	19	15	104%	16	110%	14	94%
Fe	76239	4,7	79179	104%	75286	99%	75544	99%
K	972	33	865	89%	1001	103%	1003	103%
Cu	12487	8,5	12640	101%	12548	100%	12540	100%

Table 6 Results of CEN 8/99 Ink waste for the 3 digestion methods

	EN 13656 Mean*	EN 13656 Reprod.	Sample HF power	Rec. %	Sample HBF4 power	Rec %	Sample HBF4 temp	Rec. %
Dh		70	6028	1029/		0.00/	F 790	0.70/
PD	5945	7,2	6038	102%	0000	98%	5789	97%
Mg	977	7,8	982	101%	948	97%	975	100%
Mn	543	5,8	563	104%	572	105%	599	110%
Мо	5,6	85	4,5	81%	4,9	87%	5,2	94%
Na	7013	38	4676	67%	4837	69%	4918	70%
Ni	24	23	23	97%	26	111%	25	106%
Ti	244	13	215	88%	177	73%	239	98%
V	15	12	10	66%	12	84%	12	80%
Zn	1210	9,3	1259	104%	1244	103%	1312	108%
Hg	1,9	17	1,6	85%	1,6	83%	1,8	91%

*Result from the validation study of EN 13626:2002; considered as reference value

Figure 153 Results of CEN 8/99 Ink waste for the 3 digestion methods

4.11. OVERVIEW OF SAMPLE CEN 9/99 SEWAGE SLUDGE - ELECTRONIC (20143964)

The results of sample CEN 9/99 (20143964) obtained with the 3 digestion methods were compared with the mean values of this sample obtained during the validation trial of EN 13656 in 1999. For each element and digestion method the recovery was calculated towards the mean value included in EN 13656. The obtained results are presented in Table 7 and Figure 154. The figure also includes the reproducibility coefficient of variation (2 x CV_R, 95% confidence interval) of the validation trial.

The results obtained with the 'HF power' method are results obtained according to EN 13656. The other methods 'HBF₄ power' and HBF₄ temp' are modified methods. The obtained results fit within the measurement uncertainty of the validation trial. There is no indication to declare that different results are obtained with the reference method and the 2 alternative methods.

	EN 13656 Mean* mg/kg dm	EN 13656 Reprod. %	Sample HF power	Rec. %	Sample HBF4 power	Rec %	Sample HBF4 temp	Rec. %
Al	73799	34	91099	123%	86638	117%	83729	113%
As	4,7	78	5,2	111%	6,5	139%	6,0	130%
Ва	71	33	74	105%	76	108%	80	114%
Ca	53986	12	59368	110%	55306	102%	55270	102%
Cr	86	14	78	90%	73	85%	81	94%
Со	3,7	18	2,9	80%	4,5	123%	4,3	118%
Fe	5065	16	5538	109%	5430	107%	5663	112%
К	3138	14	3116	99%	3329	106%	3351	107%
Cu	94981	7,4	99213	104%	95184	100%	98234	103%
Pb	9455	6,7	9943	105%	9405	99%	9609	102%
Mg	2144	37	2213	103%	2247	105%	2083	97%
Mn	622	7,4	631	101%	602	97%	640	103%
Мо	4,5	20	4,4	98%	4,3	97%	4,8	107%
Na	13232	7,5	12731	96%	13567	103%	12833	97%
Ni	1751	7,5	1709	98%	1599	91%	1687	96%
Sn	18756	8,7	19626	105%	17566	94%	19098	102%
Ti	118	22	98	83%	74	63%	89	75%
V	4,9	41	4,6	93%	5,2	105%	5,1	104%
Zn	231	35	244	106%	220	95%	241	104%
Hg	0,18	20	0,13	73%	0,14	77%	0,14	77%

Table 7 Results of CEN 9/99 Sewage Sludge for the 3 digestion methods

*Result from the validation study of EN 13626:2002; considered as reference value

Figure 154 Results of CEN 9/99 sewage sludge for the 3 digestion methods

4.12. OVERVIEW OF SAMPLE CEN 10/99 SEWAGE SLUDGE - BCR 146R (20143965)

The results of sample CEN 10/99 (20143965) obtained with the 3 digestion methods were compared with the mean values of this sample obtained during the validation trial of EN 13656 in 1999. For each element and digestion method the recovery was calculated towards the mean value included in EN 13656. The obtained results are presented in Table 8 and Figure 155. The figure also includes the reproducibility coefficient of variation (2 x CV_R , 95% confidence interval) of the validation trial.

The results obtained with the 'HF power' method are results obtained according to EN 13656. The other methods 'HBF₄ power' and HBF₄ temp' are modified methods. In general the obtained results fit within the measurement uncertainty of the validation trial. For the element Ti differences are observed, applicable for all 3 digestion methods. Nevertheless, in general there is no indication to declare that different results are obtained with the reference method and the 2 alternative methods.

	EN 13656	EN 13656	Sample	Rec.	Sample	Rec	Sample	Rec.
	Mean*	Reprod.	HF power	%	HBF4 power	%	HBF4 temp	%
	mg/kg dm	%						
Al	28658	23	23618	82%	29570	103%	30020	105%
Sb	13	21	14	115%	12	98%	13	103%
As	6,9	43	7,5	109%	8,6	125%	9,4	136%
Ва	660	16	495	75%	610	92%	687	104%
Cd	16 (18.8)	14	18	115%	18	112%	19	116%
Ca	134370	7,4	92356	69%	131819	98%	137852	103%
Cr	178 (196)	7,4	170	96%	181	101%	199	112%
Со	7,9 (7.39)	27	7,7	97%	7,0	89%	9,0	114%
Fe	14215	12	11153	78%	15539	109%	15837	111%
К	5466	16	4646	85%	4960	91%	5086	93%
Cu	810 (838)	8,7	813	100%	833	103%	793	98%
Pb	556 (609)	10	583	105%	569	102%	609	110%
Mg	9385	17	8254	88%	9378	100%	9429	100%
Mn	305 (323)	6,7	317	104%	318	104%	343	112%
Мо	7,8	22	8,9	113%	9,5	121%	10	132%
Na	2710	54	1598	59%	1818	67%	1892	70%
Ni	65 (70)	19	68	104%	67	103%	72	111%
Sn	76	79	92	121%	77	102%	85	113%
Ti	2314	7,6	2203	95%	872	38%	1677	72%
V	38	24	37	98%	43	112%	47	124%
Zn	2848 (3060)	7,3	2913	102%	2810	99%	2861	100%
Hg	7,2 (8.6)	22	7,7	107%	6,9	96%	8,0	110%

Table 8 Results of CEN 10/99 Sewage sludge for the 3 digestion methods

*Result from the validation study of EN 13626:2002; considered as reference value () certified values of BCR 146R

Figure 155 Results of CEN 10/99 Sewage sludge for the 3 digestion methods

4.13. OVERVIEW OF SAMPLE BCR 176R (20143966)

The results of the certified sample BCR 176R obtained with the 3 digestion methods were compared with the certified values and for each element and digestion method the recovery was calculated. The obtained results are presented in Table 9 and Figure 156. This certified material was the successor of the sample CEN 11/99 (BCR176) used in the validation trial of EN 13656 in 1999. The matrix is the same but the concentration of the different elements might change between both samples. Therefore the current data cannot be compared with the mean values of EN 13656 data. Nevertheless, Figure 156 includes the reproducibility coefficient of variation (2 x CV_R , 95% confidence interval) of the validation trial to have an idea of the expected measurement deviation. In Table 9 also the element recovery is shown as obtained on the sample BCR176 of the EN 13656 standard.

The results obtained with the 'HF power' method are results obtained according to EN 13656. The other methods 'HBF₄ power' and HBF₄ temp' are modified methods. In general the obtained results fit within the measurement uncertainty of the validation trial. If deviated results are observed, it is in most cases applicable for all 3 digestion methods. For the elements Ba, Cr (and Se) there is a significant underestimation with respect tot the reference value, but it should be noted that the indicative value of Ba is obtained by k_0 -NAA (Neutron activation analysis using k_0 -method) and the certified value of Cr is mostly based on neutron activation analyses. Also for the sample BCR 176 of the validation trial in 1999 the recovery of Cr was limited to 37%, which is in line with the current results.

	Certified value mg/kg dm	Sample HF power	Rec. %	Sample HBF4 power	Rec %	Sample HBF4 temp	Rec. %	Element Rec. (%) in EN 13656
Sb	850	776	91%	816	96%	853	100%	80%
As	54	56	104%	54	101%	60	111%	89%

Table 9 Results of BCR 176R for the 3 digestion methods

	Certified value mg/kg dm	Sample HF power	Rec. %	Sample HBF4 power	Rec %	Sample HBF4 temp	Rec. %	Element Rec. (%) in EN 13656
Ва	4650	287	6%	208	4%	306	7%	61%
Cd	226	218	96%	205	91%	220	97%	96%
Cr	810	284	35%	329	41%	346	43%	37%
Со	27	28	105%	28	103%	29	109%	232%
Fe	13100	11448	87%	13059	100%	13394	102%	98%
Cu	1050	1068	102%	1056	101%	1106	105%	100%
Pb	5000	4033	81%	4181	84%	3938	79%	98%
Mn	730	762	104%	740	101%	790	108%	91%
Na	34800	32962	95%	33985	98%	34464	99%	63%
Ni	117	116	99%	109	93%	116	99%	100%
Se	18	10	52%	12	65%	12	67%	92%
V	35	36	102%	36	103%	39	111%	115%
Zn	16800	16572	99%	17326	103%	16192	96%	102%
Hg	1,6	1,3	84%	1,4	89%	1,5	92%	98%

*light grey: indicative values

Figure 156 Results of BCR 176R for the 3 digestion methods

4.14. OVERVIEW OF CEN SAMPLES

Based on the above results it can be stated that the results obtained with the alternative methods are for all elements situated within the measurement uncertainty $(2 \times CV_R)$ with the exception of:

- Ti: systematic bias of -20% with the 'HF power' method for all samples
- K: for sample CEN 7/99 with the 'HBF4 temp' method (no systematic error)
- Cr: for sample BCR 176R with all digestion methods (sample BCR 176 analysed during the validation trial in 1999, resulted also in a low recovery of Cr of 37%, which is in line with the

results obtained with the alternative methods). No indication for systematic error with respect to other samples.

- Pb: for sample BCR 176R with all digestion methods. No indication for systematic error with respect to other samples.
- Se: for sample BCR 176R with all digestion methods. Low concentration level. No indication for systematic error with respect to other samples.

For the waste samples selected from the validation study of EN 13656, per element the ratio was calculated between the alternative method (HBF_4 power or HBF_4 temp) and the reference method (HF power). The distribution for the different elements is presented by a Box and Whisker plot, as shown in Figure 157 until Figure 162. A ratio of 1 is achieved when the alternative method give the same results as the reference method. A ratio below 1 indicates that higher values are obtained with the reference method, while a ratio above 1 indicates higher values with the alternative method.

Note that the evaluation is based on the comparison of single measurement results.

Legend

- R1 Ratio HBF₄ acid digestion, power controlled versus HF digestion, power controlled
- R2 Ratio HBF₄ acid digestion, temperature controlled versus HF digestion, power controlled

For the elements As, Cd, Cr, Cu, Pb, Ni, Zn and Hg the median value of the ratio fluctuates around 1, indicating a good correspondence between the 3 digestion methods. For the element As a broader distribution is observed in comparison with the other elements, but this is attributed to the fact that several samples have a low concentration of less than 10 mg/kg dm.

Figure 157 Overview ratio alternative methods vs the reference method for the elements As, Cd,Cr and Cu in the CEN waste samples

Figure 158 Overview ratio alternative methods vs the reference method for the elements Pb, Ni, Zn and Hg in the CEN waste samples

For the other trace elements Sb, Ba, Co, Mn, Mo, Se, Sn and V the median value also fluctuates around 1. It should be noted that for some samples the concentration level of Mo, V and Co is low (around 10 mg/kg dm or lower), introducing a broader distribution profile. For the element Ba also a larger spread is observed, due to the difficulty to get the element in solution. This was also observed in the validation trial of 1999. The obtained result is strongly dependent on the type of sample.

Note: In the VITO laboratory it was already observed that for the digestion of fly ash it is necessary to reduce the sample intake to about 0.25 g in order to obtain a maximum yield. During this study the sample intake was remained constant at about 0.5 g.

Figure 159 Overview ratio alternative methods vs the reference method for the elements Sb, Ba, Co, Mn in the CEN waste samples

Figure 160 Overview ratio alternative methods vs the reference method for the elements Mo, Se, Sn and V in the CEN waste samples

For the major elements, except Ti, the median value of the ratio fluctuates around 1 or above, meaning that when applying the alternative methods at least the concentration obtained with the reference method was obtained. For Ti differences are observed for the alternative methods in comparison with the reference method, especially when applying the HBF₄ digestion with the power controlled microwave digestion. This digestion method results in a systematic underestimation of about 20%. When applying the HBF₄ digestion with the temperature controlled microwave digestion, this effect is less pronounced.

Figure 161 Overview ratio alternative methods vs the reference method for the elements Na, Mg, Al and K in the CEN waste samples

Figure 162 Overview ratio alternative methods vs the reference method for the elements Ca, Ti and Fe in the CEN waste samples

4.15. OVERVIEW OF ALL ELEMENTS

Per element the ratio was calculated between the alternative method (HBF₄ power or HBF₄ temp) and the reference method (HF power). The distribution for the different elements is presented by a Box and Whisker plot, as shown in Figure 163 til Figure 168. <u>Note that the evaluation is based on the comparison of single measurement results.</u>

Legend

R1 Ratio HBF₄ acid digestion, power controlled versus HF digestion, power controlled

R2 Ratio HBF₄ acid digestion, temperature controlled versus HF digestion, power controlled

For the elements As, Cd, Cr, Cu, Pb, Ni, Zn and Hg in waste samples the median values fluctuate around 1, indicating that comparable results are obtained with the reference method and the alternative methods. In most cases, the ratio with 'HBF₄ power' (R1) is situated slightly below 1 (i.e. higher values with reference method) while the ratio with 'HBF₄ temp' (R2) is situated above 1 (i.e. higher values with alternative method). Globally, most of the data are situated between a ratio of 0.8 and 1.2.

Figure 163 Overview ratio alternative methods vs the reference method for the elements As, Cd,Cr and Cu in waste samples

Figure 164 Overview ratio alternative methods vs the reference method for the elements Pb, Ni, Zn and Hg in waste samples

For the other trace elements Sb, Ba, Co , Mo and V in waste samples the median values also fluctuate around 1, indicating a good correspondence. Most of the data results in a ratio between 0.8 and 1.2.

Figure 165 Overview ratio alternative methods vs the reference method for the elements Sb, Ba, Co and Mn in waste samples

Figure 166 Overview ratio alternative methods vs the reference method for the elements Mo, Se, Sn and V in waste samples

For the major elements Na, Mg, Al, K, Ca, Ti, Mn and Fe in waste samples also a median ratio of 1 is obtained, except for the element Ti. Especially the results obtained with the 'HBF₄ power' method are significantly lower than with the reference method 'HF power'. Globally, with exception for Ti, most of the data are situated between a ratio of 0.8 and 1.2.

The results of the waste samples corresponds with the results obtained on the soil samples.

Figure 167 Overview ratio alternative methods vs the reference method for the elements Na, Mg, Al, K in waste samples

Figure 168 Overview ratio alternative methods vs the reference method for the elements Ca, Ti and Fe in waste samples

CHAPTER 5 OVERALL EVALUATION OF THE DIGESTION METHODS

5.1. EVALUATION OF THE MEASUREMENT VARIATION

The overall measurement variation which can be expected when different digestion procedures are applied, are summarized in Figure 169 for soil samples and in Figure 170 for waste samples.

For the <u>soil samples</u> the ratio calculations (R1 and R2, see legend) for the <u>Vlarebo elements</u> (As, Cd, Cr, Cu, Pb, Ni, Zn and Hg) were pooled. It should be noted that low concentration values for As (< 15 mg/kg dm) and for Pb (< 10 mg/kg dm) were excluded. Figure 169 includes the pooled results for R1 (HBF₄ power/HF power), R2 (HBF₄ temp/HF power) and R1+R2 combined (HBF₄ (power+temp)/HF power). The latter gives an overview of the overall measurement variation which was obtained when applying all 3 digestion methods. The mean value of the ratios is always closely related to 1, indicating a good correspondence between the trueness of the alternative methods and the reference method. The non-outlier range is situated between a ratio of 0.8 and 1.2, which can also be expected from replicate/duplo measurements determined with the reference method only (see Table 10). One extreme value is observed, attributed to the determination of Ni in 1 soil sample. There is no indication of a systematic error.

Legend

R1 Ratio HBF₄ acid digestion, power controlled versus HF digestion, power controlled

R2 Ratio HBF₄ acid digestion, temperature controlled versus HF digestion, power controlled

R1+R2 Ratio HBF₄ acid digestion, temperature + power controlled versus HF digestion, power controlled

Figure 169 Overview ratio alternative methods vs the reference method in soil samples (elements included are Vlarebo elements)

Table 10 Limit values and intralaboratory measurement uncertainty for soil samples obtained with
the reference method ⁵

Parameter	BSN ⁽¹⁾ mg/kg dm	SW ⁽²⁾ mg/kg dm	LOQ ⁽³⁾ mg/kg dm	Intralab. Meas. Uncertain (at the level of BSN) ⁽⁶⁾				
				Bias (%)	Bias (%) CV _R (%)			
As	45	19	3.8	-6	8.7	23		
Cd	2	0.8	0.6	-4	4.6	13		
Cr	130	37	1.2	-16	11	39 ⁽⁴⁾		
				-0.9	11	24 ⁽⁵⁾		
Cu	200	17	0.6	-3	12	27		
Ni	100	9	1.2	-6	7.1	20		
Pb	200	40	5.2	-5	11	26		
Zn	600	62	2.0	-7	7.5	22		
Hg	10	0.55	0.04	-0.6	8.3	17		

(1) BSN: soil remediation value (10% clay, 2% organic matter)

(2) SW: target value (10% klei, 2% organisch materiaal)

(3) LOQ: limit of quantification

(4) U measurement uncertainty calculated with respect to reference value

(5) U measurement uncertainty calculated with respect to consensus value (mean of the method)

(6) $U = 2 * CV_R + bias$

For the <u>waste samples</u> the ratio calculations (R1 and R2, see legend) for the <u>Vlarema 4bis-elements</u> (As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, Sb, Ba, Co, Mo, Se, Sn and V) and Mn were pooled. It should be noted that low concentration values (in the range of less then 10 mg/kg dm) were excluded. Figure 170 includes the pooled results for R1 (HBF₄ power/HF power), R2 (HBF₄ temp/HF power) and R1+R2 combined (HBF₄ (power+temp)/HF power). The latter gives an overview of the overall measurement variation which was obtained when applying all 3 digestion methods. The mean value of the ratios is always closely related to 1, indicating a good correspondence between the alternative methods and the reference method. The non-outlier range is situated between a ratio of 0.8 and 1.2, which can be expected from replicate measurements (see Table 11). The extreme values observed (2) are all attributed to the determination of Ba. Also 50% of the outliers are related to Ba, the other outliers can be assigned to the elements Cr, Co and V.

For all Vlarema 4bis-elements, except Ba, there is no indication of a systematic error. For the determination of Ba, on the other hand, the digestion procedure can be critical and can have an influence on the obtained results (operational defined). In waste samples it is observed that the total release of Ba from the matrix is not always evident (e.g. ashes). This was also observed in the validation trial of EN 13656 in 1999. The obtained result is strongly dependent on the type of sample.

Note: In the VITO laboratory it was already observed that for the digestion of fly ash it is necessary to reduce the sample intake to about 0.25 g in order to obtain a maximum yield. During this study the sample intake was remained constant at about 0.5 g.

Figure 170 Overview ratio alternative method vs the reference methods in waste samples (elements included are Vlarema elements)

Table 11 Intralaboratory measurement uncertainty for waste sample obtained with the reference method⁶

Parameter		Intralab. Meas. Uncertainty (4)									
	mg/kg dm										
		Bias (%)	CV _R (%)	U (%)							
Sb	1.0	7.0	6.2	16							
As	0.94	-4.5	6.9	18							
Ва	0.14	-3.0	12	27							
Ве	1.1	-0.7	4.1	8.8							
Cd	0.02	-4.0	9.1	22							
Cr	0.22	-2.0	7.7	17							
Cu	1.2	-3.0	12	28							
Pb	0.88	-4.8	2.7	10							
Mo	0.28	-7.1	5.4	18							
Ni	0.48	-6.7	7.3	21							
Se	5.6	8.1	-	-(2)							
TI	3.2	-	-	-(2)							
Zn	0.80	-3.6	9.7	23							
Hg	0.04	3.5	(2.5)	(8.5) ⁽³⁾							

(1) LOQ: limit of quantification

(2) No samples available above LOQ

(3) Determined on the basis of 1 sample

(4) $U = 2 * CV_R + bias$

5.2. EVALUATION OF DATA OF RECOGNIZED LABORATORIES

At the moment a few laboratories already apply the HBF₄ digestion using temperature controlled microwave digestion. Based on their validation data and good evaluations in round robin tests (organized by VITO) for the determination of elements in soil and waste samples, the validity of the alternative methods is confirmed.

With respect to the round robin tests (organized by VITO), the obtained measurement variation for the analysis of elements in soil and waste samples was derived from the final evaluation reports. For soil samples, the results of the Vlarebo elements of 2012, 2013 and 2014 were considered and resulted in an overall measurement variation ($2*CV_R$, 95% C.I.) of 25%. For waste samples, the round robin test of 2012 and 2013 were taken into account, resulting in an overall measurement variation ($2*CV_R$, 95% C.I.) of 23%.

From 1 laboratory comparable data were received from the analysis of a round robin sample (N \approx 70). These data were obtained on the round robin sample ISE 989 (a river clay containing 24.7 % of Si, 28.4% of clay and 12.7 % > 63 µm) that was digested with both HF:HNO₃:HCl and HBF₄:HNO₃:HCl. For evaluation, the obtained measurement values of the 8 Vlarebo elements were divided by their consensus value (=reference value) from the round robin test. The obtained results are shown in Figure 171 and Figure 172.

The mean value of the ratios is always closely related to 1, indicating a good correspondence between the measurement value and the reference value, and this for both digestion methods. The non-outlier range is situated between a ratio of 0.8 and 1.2, which can be expected from replicate measurements. Comparable results are obtained with both digestion methods. These data confirm the results previously described in the report.

Figure 171 Ratio measurement value vs reference value in a soil sample (N \approx 70) for As, Cd, Cr and Cu for both HF and HBF₄ digestions

Figure 172 Ratio measurement value vs reference value in a soil sample (N \approx 70) for Pb, Ni, Zn and Hg for both HF and HBF₄ digestions

CHAPTER 6 CONCLUSION

In this study some alternative digestion methods were evaluated to simplify the current procedure on one hand and to extend the applicability of the procedure to different types of micro wave instruments on the other for the determination of elements in soil and waste samples. In this framework the following aspects were considered:

- 1. Evaluation of an one-step digestion (HBF₄) as replacement for the two-steps digestion with $HF + H_3BO_3$ ('HF power') The procedure involves a one-step digestion, while maintaining the same power of digestion of the silicate matrix, by using HBF₄ (replacing HF with H₃BO₃). In addition, the use of HBF₄ is for safety reasons preferred over HF.
- Evaluation of temperature controlled microwave systems as an addition to power controlled microwave systems
 The HBF₄ digestion using power controlled microwave oven ('HBF₄ power') was compared versus temperature controlled digestion ('HBF₄ temp').

Evaluation of 10 soil samples

For the <u>8 VLAREBO^g elements</u> (As, Cd, Cr, Cu, Pb, Ni, Zn and Hg) the results obtained with the alternative methods ('HBF₄ power' and 'HBF₄ temp'), corresponds with the results of the reference method ('HF power'). Higher measurements deviations are sometimes observed on samples with lower concentration levels. But there is no indication of a systematic error when applying the alternative methods with respect to the reference method. In paragraph 5.1 on page 99 it is shown that the overall measurement variation is situated in a range of < 20% if different digestion procedures are applied, which can also be expected from replicate/duplo analyses determined with the reference method only. Tests and analyses carried out by a few recognized laboratories confirm the applicability of the evaluated alternative methods to replace the time-consuming reference method.

For the <u>other trace elements</u> (Sb, Ba, Co, Mn, Mo, Se, Sn and V) the same conclusion can be formulated. Often low concentrations of these elements are measured resulting in a higher measurement deviation, but nevertheless it can be stated that comparable results are obtained with the 3 digestion methods.

For the <u>major elements</u> (Na, Mg, Al, K, Ca, Ti, Mn and Fe) a good correspondence is observed between the results of the alternative methods and the reference method, except for Ti. Especially the results obtained with the 'HBF₄ power' method are significantly lower than with the reference method 'HF power'.

Evaluation of 10 waste samples (of which 6 from the validation study of EN 13656)

For the <u>VLAREMA^h elements</u> (As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, Sb, Ba, Co, Mo, Se, Sn and V) and element Mn comparable results are obtained with the alternative methods and the reference method. In paragraph 5.1 on page 99 it is shown that the overall measurement variation is situated in a range of < 20% if different digestion procedures are applied, which can also be expected from replicate/duplo analyses determined with the reference method only. Moreover, for the

^g Flemish regulation on soil remediation and protection regulations

^h Flemish regulation on sustainable management of material cycles and waste – VLAREMA 4bis (dec 2013)

determination of Ba it is observed that the digestion procedure can be critical and can have an influence on the obtained results (operational defined). Special attention needs to be given to the digestion procedure for the determination of this element. This effect is no surprise as it was also established during the validation trial of EN 13656 in 1999. Tests and analyses carried out by a few recognized laboratories confirm the applicability of the evaluated alternative methods to replace the time-consuming reference method.

For the <u>major elements</u> (Na, Mg, Al, K, Ca, Ti and Fe) the same conclusion can be formumated as for the soil samples. A good correspondence is observed between the results of the alternative methods and the reference method, except for Ti. Especially the results obtained with the 'HBF₄ power' method are significantly lower than with the reference method 'HF power'.

ANNEX A ANALYTICAL RESULTS OF THE SOIL SAMPLES USING DIFFERENT DIGESTION PROCEDURES

	mg/kg ds	1	1b	2	3	4	4b	5	5b	6 - QC1	7	7b	8	9	10	11	12 - QC2
A٩	HF power	71	63	28	29	34		34		35	29	28	71	13	133	13	104
/ (5	HPE4 power	66	66	20	22	27		2 5,4		25	27	20	74	11	122	11	104
	HBF4 tomp	60	00	20	23	20	20.2	3,5	2.0	35	27	25	74	12	122	12	104
	ныға сеттр	00	42	2/	24	29	30,3	2,4	3,9	35	29	4.6	/5	13	120	12	100
Ca	HF power	13	13	2,6	21	27		< 0.5		2,5	1,6	1,6	1,/	<0.5	3,4	9,5	39
	HBF4 power	13	13	2,4	22	28		<0.5		2,5	1,7	1,6	1,9	<0.5	3,6	10,0	41
	HBF4 temp	13		2,9	21	25	26,5	<0.5	<0.5	2,5	1,5		1,7	0,5	3,5	9,5	40
Cr	HF power	115	109	177	59	63		856		121	199	196	673	40	58	153	42
	HBF4 power	109	106	167	58	60		742		117	195	193	653	40	61	149	43
	HBF4 temp	114		173	63	65	74	762	772	122	202		567	45	66	163	42
Cu	HF power	1573	1933	1696	139	150		85		103	6685	6613	1490	41	710	526	119
	HBF4 power	1751	2186	1430	155	153		84		100	6178	6384	1325	34	715	504	115
	HBF4 temp	1416	1347	1603	145	143	157	84	98	101	6618		1461	40	716	505	116
Ph	HE power	019	803	468	610	071	157	82	- 50	167	852	828	862	150	917	521	1102
FU		076	1051	408	- OIU	040		6,2		167	852	020	000	170	004	551	1102
	HBF4 power	976	1051	444	564	940	004	0,5	0.0	107	809	8/5	909	170	904	555	1124
	HBF4 temp	951		443	551	867	901	8,5	8,3	170	860		907	157	849	580	1134
Ni	HF power	128	123	141	28	31		68		46	114	110	431	23	105	110	21
	HBF4 power	133	128	133	28	31		53		45	118	120	404	24	118	118	22
	HBF4 temp	125		141	27	31	33	61	86	45	113		306	24	108	110	20
Zn	HF power	1854	1712	1553	1591	1924		101		487	4047	4030	1660	159	4973	2595	365
	HBF4 power	1939	1940	1428	1558	2011		102		492	4118	4108	1704	169	5029	2653	381
	HBF4 temp	1743		1523	1577	1928	1979	111	105	490	4163		1736	169	5238	2610	356
Hg	HF power	0,58	0,59	0,99	2,5	2,6		< 0.1		1,1	1,1	1,2	65	77	0,39	0,58	6,7
Ŭ	HBF4 power	0,59	0,57	0,95	2,5	2.6		<0.1		1.1	1.0	1.0	65	72	0,35	0,48	6.1
	HBF4 temp	0.60	.,	1.01	2.8	2.6	2.61	<0.1	<0.1	11	10	,-	63	70	0.34	0.50	6.0
Sh	HEnower	1/1 7	15.5	13.1	9.1	5.4	2,01	10.1	.0.1	<2	22.2	32.5	3/1.2	13	15.9	63.3	22.2
55	HPE4 power	11.0	10.0	12.0	6.6	7.4		4.0		12	21.2	21.0	22.0	-,J	10 /	61.0	22,2
	HBF4 power	11,0	18,0	12,9	0,0	7,4	0.7	4,9	20	4,5	21.4	51,0	32,0	22	10,4	54.2	21,7
-	HBF4 temp	16,6		13,9	8,2	8,2	8,7	<2	3,0	5,4	31,1		33,3	3,3	17,2	54,3	21,5
Ва	HF power	523	531	864	405	453		103		570	1339	1360	517	319	940	415	698
	HBF4 power	575	587	931	434	500		104		550	1256	1238	516	316	941	394	681
	HBF4 temp	519		877	401	463	456	99	102	541	1340		514	307	936	399	657
Со	HF power	64,5	63,0	19,3	11,2	9,8		6,4		15,2	34,8	33,8	37,6	12,1	20,1	10,9	9,3
	HBF4 power	64,6	63,7	18,1	11,2	9,9		4,7		14,9	35,3	35,7	44,3	13,1	21,7	11,6	9,1
	HBF4 temp	62,9		18,9	11,5	10,2	11,1	4,9	4,8	14,7	35,2		41,3	13,0	21,5	13,8	10,4
Mo	HF power	9,3	9,1	8,4	1,5	1,6		8,6		1,3	16,0	15,5	66,2	1,7	2,8	32,1	1,7
	HBF4 power	8,6	8,7	6,3	1,1	<1		9,4		<1	16,0	14,8	83,3	1,5	2,7	33,7	1,8
	HBF4 temp	8.6		6.4	1.1	1.1	1.2	8.3	7.4	<1	15.8		68.3	1.7	2.7	33.5	1.6
Sn	HEnower	88	78	49	27	21		3.2	.,.	11	439	444	36	6.4	154	77	<2
511	HRE4 power	160	191	43	20	22		2),L		0.2	433	452	27	12	170	82	< <u>-</u> 2
	HBE4 tomp	145	101	43	26	23	22	~2	2	10	437	433	22	-,J - 6 0	150	77	~2
	ныга септр	145	142	41	20	23	25	~2	3	10	437	112	33	0,9	156	10	~2
v	HF power	146	142	74	48	46		41		98	113	112	47	49	37	48	91
	HBF4 power	147	147	76	49	48		37		96	115	116	48	52	39	50	94
-	HBF4 temp	146		74	49	46	52	40	38	94	119		47	53	41	51	91
Na	HF power	3830	3856	4670	1965	2416		2129		5240	3274	3274	1345	2604	2238	3191	11093
	HBF4 power	3759	3771	4695	1976	2437		2158		5143	3384	3369	1414	2751	2358	3207	11403
	HBF4 temp	3729		4592	1920	2340	2398	2154	2114	4949	3261		1437	2627	2278	3091	10630
Mg	HF power	3445	3581	2518	3071	3159		2125		10711	5166	5245	1511	2436	1342	5519	9487
	HBF4 power	3758	3751	2545	3185	3246		2303		11005	5423	5662	1589	2627	1545	5619	10041
	HBF4 temp	3144		2327	3035	2996	3182	2121	2062	10574	5615		1707	2397	1264	5986	8828
AI	HF power	45361	45231	22695	20212	22780		43413		56148	40381	40560	14427	22058	19646	21218	63365
	HBF4 power	43686	44388	21536	18451	21525		48178		54291	42296	43646	15873	24186	22787	19961	64150
	HBF4 temp	36101		19111	19539	21215	22872	50543	49177	46866	43257		15890	20636	22461	19249	55086
ĸ	HE power	119/2	11500	8725	7666	8760	22072	1/22	43177	100/1	11120	11172	5027	11510	7229	21/15	22068
ĸ		11705	12001	0233	7000	0003		1400		10102	1120	11270	5037	11754	2020	21415	23008
	HBF4 power	11/95	12001	8143	7708	9002	0540	1466	4264	10102	11291	11379	5405	11/54	8030	21040	23299
_	HBF4 temp	10620		/358	6649	7759	8513	1439	1261	16980	11268		5142	11397	7414	21263	22023
Ca	HF power	31761	35370	35648	28167	23312		2478		43121	36128	36447	17911	20916	6882	217327	27403
	HBF4 power	30885	31168	35618	27808	23698		2737		40661	37114	37328	18347	20479	7053	209124	27876
	HBF4 temp	26869		33111	27704	22488	23841	2625	2533	39587	37620		18168	19036	6418	211662	25820
Ti	HF power	2358	2189	1412	1211	1390		2257		2534	3367	3356	1572	1251	1454	1471	2522
	HBF4 power	1841	1749	1095	997	1089		2173		1477	2453	2484	1316	1023	1191	1099	2067
	HBF4 temp	1944		1257	1241	1233	1483	2269	2263	2005	3307		1600	1178	1510	1252	2388
Mn	HF power	437	447	682	307	284		1150		1257	1396	1380	2238	263	244	605	638
	HBF4 power	497	465	685	314	293		1048		1209	1472	1461	2354	283	270	647	660
	HBF4 temp	443		657	303	310	304	1045	1090	1231	1375		2185	266	252	614	638
F٩	HEnower	31297	30554	61756	14621	1671/	504	1819/	1000	31217	123050	121242	338601	18371	20200	228/19	27222
10	HREA power	20562	21/70	60/12	1/777	16970		10104		20/10	117256	121272	228101	103/1	20300	23040	27203
	LIDE4 power	20703	51470	00413	14/2/	108/9	47000	10200	47007	29419	120254	1212/2	330101	10445	20485	23333	27721
	нвғ4 тетр	30/68		01386	14/33	16443	1/288	18409	17087	31254	128351		344186	18286	20691	24334	27800

ANNEX B ANALYTICAL RESULTS OF THE WASTE SAMPLES USING DIFFERENT DIGESTION PROCEDURES

	un e (lue ele	4	41-	2	2		F	6.061	7	0	01-	0	10	11	12.002
-	ing/kg us	1	10	2	3	4	5	0-QCI	/	0	0.0	9	10	11	12-QC2
As	HF power	33	31	70	42	687	41	36	89	6,1	6,3	5,2	7,5	56	105
	HBF4 power	29	33	61	36	675	42	31	88	4,5	5,2	6,5	8,6	54	115
	HBF4 temp	31	29	70	47	642	52	38	95	6,2	5,6	6,0	9,4	60	108
Cd	HF power	45	39	25	24	8,6	424	2,4	565	<0.5	<0.5	<0.5	18	218	40
	HBF4 power	47	36	22	22	9.4	422	2.5	538	< 0.5	< 0.5	< 0.5	18	205	41
	HBF4 temn	44	39	25	25	9.4	425	2.5	513	<0.5	<0.5	<0.5	19	220	42
C.	HE nouver	504	55 F11	270	1024	5,4	460	125	204	2577	25.00	70.5	170	220	42
Cr	HF power	504	511	2/8	1024	50	469	125	294	35//	3588	/8	170	284	42
	HBF4 power	533	498	247	708	50	472	121	251	3527	3536	73	181	279	40
	HBF4 temp	635	510	289	883	53	558	133	326	3512	3570	81	199	329	42
Cu	HF power	9163	7588	2019	769	21	1874	104	1315	12640	12491	99213	813	1068	119
	HBF4 power	8804	10102	2105	768	22	1989	103	1248	12548	12597	95184	833	1056	112
	HBF4 temn	5861	8057	2262	926	18	1944	101	1411	12540	12892	98234	793	1106	115
Dh	HE power	5001	6509	1076	71	200	10250	175	11746	6029	E022	0042	E00	4022	1102
FD	HF power	5570	0308	1070	71	200	10239	175	11740	5056	5922	3343	565	4033	1102
	HBF4 power	6055	6939	1049	/1	202	10084	176	11598	5856	5912	9405	569	4181	1131
	HBF4 temp	5576	5694	1072	76	202	10363	180	10883	5789	5880	9609	609	3938	1193
Ni	HF power	443	377	126	592	10	70	47	111	23	22	1709	68	116	21
	HBF4 power	506	424	116	542	12	57	43	108	26	25	1599	67	109	22
	HBF4 temp	458	443	127	530	11	69	47	105	25	25	1687	72	116	24
Zn	HEnower	16690	16537	3245	908	227	27529	505	26852	1259	1269	244	2913	16572	365
211	HPE4 power	17100	17251	2170	722	100	27254	505	27524	1200	1203	220	2010	17226	244
	пыг4 power	1/100	1/251	5170	/25	199	27254	570	27524	1244	1262	220	2810	1/520	544
	HBF4 temp	18290	18212	3244	809	204	29303	527	25782	1312	1311	241	2861	16192	381
Hg	HF power	6,2	3,8	3,2	2,2	12	5,7	1,2	33	1,6	1,7	0,13	7,7	1,3	6,7
	HBF4 power	3,4	3,7	3,3	2,2	13	5,8	1,1	30	1,6	1,7	0,14	6,9	1,4	5,8
	HBF4 temp	3,9	3,5	3,4	2,7	12	6,1	1,3	33	1,8	1,7	0,14	8,0	1,5	6,2
Sh	HF power	240	241	172	12	17	1151	<2	308	12	13	<2	14	776	22
55	HBEA nower	220	260	179	15	11	1174	50	286	01	07	~2	12	Q16	10
-	LIDEA tome	223	205	170	10	11	1061	2,0	200	0.0	11	~2	12	010	13
-	пыга сеттр	250	245	1/8	10	11	1001	5,9	504	9,9	11	<2	15	655	25
Ва	HF power	3415	3735	618	2894	393	1020	530	1033	102	103	74	495	287	698
	HBF4 power	3256	4462	681	2881	405	804	578	319	90	98	76	610	208	661
	HBF4 temp	4095	3815	908	3084	404	1308	533	563	112	110	80	687	306	650
Co	HF power	65	64	167	61	1,2	25	17	33	15	15	2,9	7,7	28	9,3
	HBF4 power	62	69	150	54	<1	23	17	29	16	16	45	7.0	28	10
	HDF4 tomp	72	60	165	64	~1	25	16	25	14	14	4.2	0,0	20	10
	пыга сеттр	/5	09	105	04	<1	20	10	25	14	14	4,5	9,0	29	10
IVIN	HF power	1806	1838	/24	411	80	519	1254	1424	563	568	631	317	762	638
	HBF4 power	2038	1487	642	347	69	534	1276	1298	572	590	602	318	740	653
	HBF4 temp	2042	1853	713	411	75	545	1306	1427	599	599	640	343	790	688
Mo	HF power	84	77	17	287	6,3	25	<1	48	4,5	4,5	4,4	8,9	35	1,7
	HBF4 power	67	63	16	248	6.3	24	1.3	43	4.9	4.3	4.3	9.5	33	1.6
	HBE4 temp	86	62	16	296	5.5	27	<1	18	5.2	5.2	1.8	10	37	1.8
-	ribr4 temp		02	10	290	5,5	27	~1	40	5,2	5,2	4,0	10	57	1,0
se	HF power	<5	8	<5	106	<5	31	<5	34	<5	<5	<5	<5	10	
	HBF4 power	<5	<5	<5	95	<5	34	<5	36	<5	<5	<5	<5	12	
	HBF4 temp	<5	<5	<5	99	<5	34	<5	32	<5	<5	<5	<5	12	
TI	HF power	<5	<5	69	12	<5	<5	<5	<5	<5	<5	<5	<5	<5	
	HBF4 power	<5	<5	65	8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	HBF4 temp	<5	<5	72	59	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
5.0	HE nower	222	500	252	10		1220	0	25.60			10626	02	1005	
511	HEPOWEI	333	333	235	40	~2	1330	9	2309	~2	~2	19020	52	1005	
	HBF4 power	395	285	225	47	<2	1378	12	2447	<2	<2	1/566	11	978	<3
	HBF4 temp	336	470	249	49	<2	1499	9	2344	<2	<2	19098	85	1064	<2
V	HF power	45	45	63	14	48	23	100	49	10	10	5	39	36	91
	HBF4 power	46	42	57	13	52	22	97	45	12	12	5	43	36	81
	HBF4 temp	47	48	62	14	43	25	96	50	12	12	5	47	39	88
Na	HF power	16692	14956	8484	44082	383	52575	5003	32912	4676	4645	12731	1598	32962	11093
	HBF4 power	16230	16582	10393	43938	301	61488	5240	32912	4837	4859	13567	1818	33985	11414
-		10200	14207	0375	E0333	412	62050	5240	22200	4010	4004	12022	1000	24464	11050
	HBF4 temp	12794	14367	9272	50222	412	63956	5547	32398	4918	4891	12833	1892	34464	11059
Mg	HF power	8808	8309	11099	5889	2612	9424	10956	18309	982	979	2213	8254	14468	9487
	HBF4 power	9911	9109	11204	5870	2603	11197	10751	17854	948	946	2247	9378	15069	9830
	HBF4 temp	9242	10773	10978	5830	2626	11784	10043	17079	975	969	2083	9429	14689	9395
AI	HF power	25605	25483	33464	73485	9892	40258	58245	82588	2163	2150	91099	23618	52955	63365
	HBF4 power	25731	25530	33367	66418	9532	47124	55847	82993	2252	2283	86638	29570	53612	61460
	HDF4 tomp	27007	25550	21169	61941	0177	4/124	50457	80750	2202	2205	00000	20020	55012	61702
	пыг4 тешр	2/08/	25905	51100	01641	91//	40505	50457	80759	2292	2282	83729	50020	55227	01/05
к	HF power	4277	4379	4605	4407	9546	50225	18985	38505	865	1029	3116	4646	33509	23068
	HBF4 power	4281	4839	4964	4519	9884	54941	17988	40275	1001	1028	3329	4960	35200	19506
	HBF4 temp	4894	4824	4956	4737	9851	65463	17109	33558	1003	922	3351	5086	32806	18720
Ca	HF power	66325	67364	192900	53831	5686	127951	43119	80344	109974	112738	59368	92356	156348	27403
1	HBEA nower	65066	64604	107116	50115	5751	1/1670	11500	82776	110620	110221	55206	121010	177244	27672
-	UDF4 power	71000	04094	1000000	50115	5751	1410/8	41309	02//0	10020	100221	55300	101019	170040	2/0/3
<u> </u>	нвғ4 temp	/1646	6/212	199893	54018	5/38	143719	41539	80227	106958	106100	55270	13/852	179043	2/179
Ti	HF power	5402	5118	7652	4841	486	7320	2601	7963	215	217	98	2203	9279	2522
	HBF4 power	1886	2155	5224	4014	332	6760	1363	5209	177	190	74	872	7875	2092
	HBF4 temp	4543	3736	6836	4436	437	7992	2700	5006	239	251	89	1677	8766	2424
Fe	HF power	125696	120059	21414	18092	143802	10278	32248	22052	79179	78833	5538	11795	11448	27283
1	HBF4 power	119987	117674	24790	171/9	146222	10207	31221	21210	75286	76673	5420	15520	13050	27586
<u> </u>	UDF4 power	11330/	12725	24/90	17220	140223	10297	31221	21310	75200	70075	5450	10000	12029	2/300
1	нв⊦4 temp	121806	12/251	21372	1/236	146947	10330	31671	21307	/5544	//457	5663	15837	13394	28693

REFERENCES

¹ NBN EN13656:2002 Characterization of waste – Microwave assisted digestion with hydrofluoric (HF), nitric (HNO₃) and hydrochloric (HCl) acid mixture for subsequent determination of elements.

² C. Vanhoof, Groep AN, K. Tirez, *Evaluatie vereenvoudiging CMA procedures voor de analyse van anorganische parameters in grondwater, bodem en waterbodem*, VITO report 2009/MANT/R/010, 2009.

³ Compendium voor Monsterneming en Analyse (CMA) (<u>http://emis.vito.be/referentielabo-ovam</u>), CMA/2/II/A.3 Gesloten microgolfoven destructiemethode met salpeterzuur, zoutzuur en waterstoffuoride.

⁴ NBN EN 16174:2012 Sludge, treated biowaste and soil – Digestion of aqua regia soluble fractions of elements.

⁵ K. Tirez, G. Vanermen, Groep AN en OR, C. Vanhoof en S. Bleyen, *Prestatiekenmerken Vlarebo parameters*, VITO report 2004/MIM/R/71.

⁶ C. Vanhoof, Groep AN en K. Tirez, *Prestatiekenmerken pakket 4.3 Gevaarlijke afvalstoffen: Anorganische parameters*, VITO report 2007/MIM/R/040.