

(Contract 051792)

ED-XRF analysen van afvalstoffen (Vlarea)

Finaal rapport

C. Vanhoof, B. Noten en K. Tirez

Studie uitgevoerd in opdracht van de OVAM

2006/MIM/R/014

Milieumetingen

Februari 2006

INHOUDSTAFEL

ľ	NHOUDS	STAFEL	1
S.	AMENV	ATTING	3
0	VERZIC	CHT TABELLEN	5
0	VERZIC	CHT FIGUREN	5
1	SITI	JERING ONDERZOEK	7
-	1 1		
	1.1		7
	1.2	WEIGEVEND KADER	/
	1.3	BESCHRIJVING ONDERZOEK	10
2	CON	IMERCIEEL BESCHIKBARE ED-XRF MEETSYSTEMEN	11
3	BES	CHRIJVING TOEGEPASTE ANALYSETECHNIEK	15
	3.1	ED-XRF SPECTROMETER	15
	3.1.1	X-stralenbuis	16
	3.1.2	Monstercompartiment	16
	3.1.3	Targets	16
	3.1.4	Detectiesysteem	17
	3.1.5	Data processor	17
	3.1.6	Meetmethode	18
	3.1.7	Kalibratieprogramma	19
	3.2	MONSTERVOORBEHANDELING BIJ ED-XRF ANALYSEN	20
	3.3	ICP-AES ANALYSE	21
4	VER	GELIJKENDE ED-XRF EN ICP-AES ANALYSEN VAN AFVALSTOFFEN	23
	4.1	ANALYSE VAN REFERENTIEMONSTERS (VLIEGASSEN) MET ED-XRF	23
	4.2	ANALYSE VAN RINGTESTMONSTERS.	26
	4.2.1	Resultaten CEN 10/99 (BCR146R)	26
	4.2.2	Resultaten CEN 11/99 (BCR 176)	27
	4.2.3	Resultaten CEN 6/99 (vliegas)	28
	4.2.4	Resultaten CEN 7/99 (Bodemas)	29
	4.2.5	Resultaten CEN 8/99 (Ink waste)	30
	4.2.6	Resultaten CEN 9/99 (electronic waste)	32
	4.2.7	Besluit resultaten ringtestmonsters	33
	4.3	ANALYSE VAN REËLE AFVALMONSTERS	34
	4.3.1	Beschrijving afvalmonsters	34
	4.3.2	Verwerking van de data	35
	4.3.3	Resultaten duplo analysen	36
	4.3.4	Regressieanalyse	37
	4.3.5	Absoluut en/of relatief verschil tussen de ICP-AES en de ED-XRF meetwaarde t.o.v. de el	ement
	conce	entratie	39
	4.3.6	Meetonzekerheid $U_{ICP-AES}$ in relatie met de absolute of relatieve afwijking ICP-AES/ED-XI	RF. 44
	4.4	BESLUIT	46
5	BES	LUIT	48
6	RFF	FRENTIES	51
	ALT.		

SAMENVATTING

In het kader van de Vlarea wetgeving dienen diverse types van afvalstoffen gekarakteriseerd te worden op basis van hun metaal totaalsamenstelling. De opgelegde methoden voor metaalkwantificering vergen allen een zuurdestructie voor de kwantitatieve vrijstelling van de metalen voorafgaand aan de meting. In het kader van bodemanalysen werd de inzetbaarheid van energie-dispersieve X-stralenfluorescentie (ED-XRF) reeds geëvalueerd. Deze analysetechniek is een milieuvriendelijke techniek die toelaat om op een snelle, nietdestructieve manier totaalgehalten aan metalen te bepalen. Bovendien wordt een totaalkarakterisatie (alle elementen) uitgevoerd zodat interferenten en andere contaminanten (verdachte stoffen) snel worden gedetecteerd. In deze studie werd nagegaan of het toepassingsgebied van ED-XRF verder uitgebreid kan worden naar de analyse van de diverse afvalmonsters in het kader van de Vlarea wetgeving.

Dit rapport beschrijft de onderzoeksresultaten en de mogelijkheden van de ED-XRF techniek voor het toetsen van normwaarden in het kader van de karakterisatie van secundaire grondstoffen (parameterpakket 3), gevaarlijke afvalstoffen (parameterpakket 4) en afvalstoffen in het kader van de specifieke verbrandingsparameters (parameterpakket 9). Anderzijds werd ook de inzetbaarheid van ED-XRF als screeningstechniek voor de verificatie van op een stortplaats afgeleverde lading in kaart gebracht.

In paragraaf 5 op pagina 48 is een overzicht gegeven van de inzetbaarheid van de diverse ED-XRF meetsystemen voor de analyse van de afvalmonsters in het kader van de Vlarea wetgeving.

OVERZICHT TABELLEN

Tabel 1: Parameters van de meetmethode	19
Tabel 2: ICP-AES instrumentele instellingen	21
Tabel 3: Analyseresultaten van ringtestmonster CEN 10/99 (BCR146R)	27
Tabel 4: Analyseresultaten van ringtestmonster CEN 11/99 (BCR176)	28
Tabel 5: Analyseresultaten van ringtestmonster CEN 6/99 (vliegas)	29
Tabel 6: Analyseresultaten van ringtestmonster CEN 7/99 (bodemas)	30
Tabel 7: Analyseresultaten van ringtestmonster CEN 8/99 (inkt afvalslib)	31
Tabel 8: Analyseresultaten van ringtestmonster CEN 9/99 (electronic waste)	33
Tabel 9: Lijst van geanalyseerde afvalstoffen	34
Tabel 10: Overzicht intra-reproduceerbaarheidvariatiecoëfficiënt (CV _R)	36
Tabel 11: Regressiecoëfficiënten van de vergelijkende ED-XRF/ICP-AES analysen	37

OVERZICHT FIGUREN

Figuur 1: Draagbare ED-XRF spectrometer : (A) Niton met radio-actieve isotopen; (B,C,D)
ED-XRF met miniatuur X-stralenbuis, resp. Niton, Oxford en Metorex11
Figuur 2: Bench top ED-XRF spectrometer
Figuur 3: High Performance ED-XRF systemen met gepolariseerd licht
Figuur 4: X-LAB 2000 ED-XRF spectrometer (Spectro)15
Figuur 5: Schematische voorstelling van de ED-XRF spectrometer
Figuur 6: Monstercompartiment16
Figuur 7: Excitatie met gepolariseerd licht
Figuur 8: ED-XRF spectra van een gecertificeerd vliegas N1633b (a) Mo target, (b) Al ₂ O ₃
target, (c) Pd target, (d) Co target
Figuur 9: Trilmolen
Figuur 10: XRF monsterbeker
Figuur 11: ED-XRF resultaten van het referentiemonster N1633b (vliegas)23
Figuur 12: ED-XRF resultaten (matrixelementen) van het referentiemonster N1633b24
Figuur 13: ED-XRF resultaten van het referentiemonster N2691 (vliegas)24
Figuur 14: ED-XRF resultaten (matrixelementen) van het referentiemonster N2691 (vliegas)
Figuur 15: ED-XRF resultaten van het referentiemonster CRM038 (vliegas)25
Figuur 16: Ringtestmonster CEN 8/99
Figuur 17: ED-XRF spectra van een bodemmonster (blauw) en monster CEN 8/99 (roos).32
Figuur 18: Vergelijkende analyseresultaten ICP-AES/ED-XRF
Figuur 19: Vergelijkende analyseresultaten ICP-AES/ED-XRF
Figuur 20: Weergave van het absolute (rechts) en/of relatieve (links) verschil tussen de ICP-
AES en de ED-XRF meetwaarde t.o.v. de overeenkomstige element concentratie40
Figuur 21: Weergave van het absolute (rechts) en/of relatieve (links) verschil tussen de ICP-
AES en de ED-XRF meetwaarde t.o.v. de overeenkomstige element concentratie41
Figuur 22: Weergave van het absolute (rechts) en/of relatieve (links) verschil tussen de ICP-
AES en de ED-XRF meetwaarde t.o.v. de overeenkomstige element concentratie42

Figuur 23: Weergave van het absolute (rechts) en/of relatieve (links) verschil tussen de ICP-
AES en de ED-XRF meetwaarde t.o.v. de overeenkomstige element concentratie43
Figuur 24: Relatieve afwijking tussen ICP-AES/ED-XRF [mediaan waarde (=marker, 50P))
– 5P -95P] in relatie met meetonzekerheid U _{ICP-AES}
Figuur 25: Relatieve afwijking tussen ICP-AES/ED-XRF [mediaan waarde (=marker, 50P))
– 5P -95P] in relatie met meetonzekerheid U _{ICP-AES}
Figuur 26: Absolute afwijking tussen ICP-AES/ED-XRF [mediaan waarde (=marker, 50P))
– 5P -95P] in relatie met meetonzekerheid U _{ICP-AES}

1 SITUERING ONDERZOEK

1.1 Inleiding

In het kader van de Vlarea wetgeving dienen diverse types van afvalstoffen gekarakteriseerd te worden op basis van hun metaal totaalsamenstelling. De opgelegde methoden voor metaalkwantificering vergen allen een zuurdestructie voor de kwantitatieve vrijstelling van de metalen voorafgaand aan de meting. In het kader van bodemanalysen werd de inzetbaarheid van energie-dispersieve X-stralenfluorescentie (ED-XRF) reeds geëvalueerd.¹ Deze analysetechniek is een milieuvriendelijke techniek die toelaat om op een snelle, niet-destructieve manier totaalgehalten aan metalen te bepalen. Bovendien wordt een totaalkarakterisatie (alle elementen) uitgevoerd zodat interferenten en andere contaminanten (verdachte stoffen) snel worden gedetecteerd. In deze studie zal worden nagegaan of het toepassingsgebied van ED-XRF verder kan uitgebreid worden naar de analyse van de diverse afvalmonsters in het kader van de Vlarea wetgeving.

Enerzijds zal worden nagegaan of de ED-XRF techniek kan ingezet worden voor het toetsen van normwaarden in het kader van de karakterisatie van secundaire grondstoffen (parameterpakket 3), gevaarlijke afvalstoffen (parameterpakket 4) en specifieke verbrandingsparameters (parameterpakket 9). Anderzijds zal de inzetbaarheid van ED-XRF als screeningstechniek voor de verificatie van op een stortplaats afgeleverde lading worden in kaart gebracht.

Bij ED-XRF analysen wordt een volledig gamma aan elementen simultaan bepaald. Voor de analyse van afvalstoffen zal de validatie specifiek gericht zijn op de verschillende parameters, opgenomen in de diverse parameterpakketten van de erkenningen. Voor de karakterisatie van afvalstoffen komen volgende pakketten in aanmerking:

- Parameterpakket 3.1: Secundaire grondstoffen: anorganische parameters algemeen
 - Totaalconcentratie aan metalen: As, Cd, Cr, Cu, Hg, Pb, Ni en Zn
- Parameterpakket 4.3: Gevaarlijke afvalstoffen: anorganische parameters
 - Totaalconcentratie aan metalen: As, Tl, Hg, Cd, Be, Ba, Pb, Cr, Cu, Ni, Zn, Mo, Sb en Se
- Parameterpakket 9: Specifieke verbrandingsparameters
 - Totaalconcentratie aan metalen: Cd, Tl, Hg, Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V en Sn

1.2 Wetgevend kader

Een overzicht van het wetgevend kader en de bijhorende toetsingsnormen voor de diverse metaalbepalingen in afvalstoffen wordt hieronder beschreven.

Wetgeving secundaire grondstoffen

De aanwending van afvalstoffen als secundaire grondstoffen staat beschreven in hoofdstuk IV van het Besluit van de Vlaamse regering van 5 december 2003 tot vaststelling van het Vlaams reglement inzake afvalvoorkoming en –beheer (VLAREA).

Om afvalstoffen als secundaire grondstoffen te gebruiken als meststof of als bodemverbeterend middel zijn de voorwaarden inzake samenstelling, namelijk maximale gehalten aan verontreinigende stoffen. zoals bepaald in bijlage 4.2.1.A van toepassing:

- As 150 mg/kg ds
- Cd 6 mg/kg ds
- Cr 250 mg/kg ds
- Cu 375 mg/kg ds
- Hg 5 mg/kg ds
- Pb 300 mg/kg ds
- Ni 50 mg/kg ds
- Zn 900 mg/kg ds

Om afvalstoffen als secundaire grondstoffen te gebruiken in of als bouwstof dient voldoen te worden aan de voorwaarden inzake samenstelling voor gebruik in of als bouwstof zoals bepaald in bijlage 4.2.2.A:

- As 250 mg/kg ds
- Cd 10 mg/kg ds
- Cr 1250 mg/kg ds
- Cu 375 mg/kg ds
- Hg 5 mg/kg ds
- Pb 1250 mg/kg ds
- Ni 250 mg/kg ds
- Zn 1250 mg/kg ds

Voor het gebruik van afvalstoffen als bodem gelden de overeenkomstige definities en voorwaarden voor het gebruik van uitgegraven bodem als bodem, zoals bepaald in hoofdstuk X van het Vlarebo.

Wetgeving gevaarlijke afvalstoffen

Volgens het besluit van de Vlaamse regering houdende bepaling van de gevaarlijke afvalstoffen van 24 mei 1995 wordt elke afvalstof, ongeacht zijn herkomst, een gevaarlijke afvalstof als volgende grenswaarden worden overschreden:

- As 1000 mg/kg ds
- Tl 100 mg/kg ds
- Hg 100 mg/kg ds
- Cd 1000 mg/kg ds
- Be 250 mg/kg ds

De totaalconcentraties van de metalen As, Cd, Hg, Ba, Pb, Cr, Cu, Ni, Zn, Mo, Sb en Se in afvalstoffen zijn van belang in het kader van de basiskarakterisatie van afvalstoffen op stortplaatsen. De lijst van de te toetsen parameters werd geactualiseerd conform de parameters beschreven in de beschikking van de Raad van 19 december 2002 tot vaststelling van criteria en procedures voor het aanvaarden van afvalstoffen op stortplaatsen (2003/33/EG). Geen specifieke normwaarden zijn voor deze parameters in de vaste afvalstof vooropgesteld (enkel in de uitloging).

Wetgeving specifieke verbrandingsparameters

Volgens Art. 5.2.3.2.4. van het Besluit van de Vlaamse regering van 1 juni 1995 houdende algemene en sectorale bepalingen inzake milieuhygiëne (VLAREM II) moet elke verbrandingsinrichting voor gevaarlijke afvalstoffen, wanneer zij in bedrijf is, voldoen aan

de voorwaarde dat de concentratie van verontreinigende stoffen in de verbrandingsgassen niet hoger mag zijn dan:

Emissiegrenswaarden in mg/Nm ³		
Verontreinigde stof	Halfuurgemiddelden A B	Daggemiddelden
Zware metalen (*)	[vergund vóór 1/1/1995]	[vergund op of na 1/1/1995]
De som van		
- cadmium en		
cadmiumverbvindingen		
uitgedrukt als cadmium (Cd) en	0.1	0.05
- thallium en		
thallliumverbindingen uitgedrukt		
als thallium (Tl):		
Kwik en kwikverbindingen	0.1	0.05
uitgedrukt als kwik (Hg):	0.1	0.05
De som van		
- antimoon en		
antimoonverbindingen uitgedrukt		
als antimoon (Sb),		
- arseen en arseenverbindingen		
uitgedrukt als arseen (As),		
 lood en loodverbindingen 		
uitgedrukt als lood (Pb),		
- chroom en chroomverbindingen		
uitgedrukt als chroom (Cr),		
- kobalt en kobaltverbindingen		
uitgedrukt als kobalt (Co),	1	0.5
- koper en koperverbindingen		
uitgedrukt als koper (Cu),		
- mangaan en angaanverbindingen		
uitgedrukt als mangaan (Mn),		
 nikkel en nikkelverbindingen 		
uitgedrukt als nikkel (Ni),		
- vanadium en		
vanadiumverbindingen		
uitgedrukt als vanadium (V) en		
- tin en tinverbindingen uitgedrukt		
als tin (Sn):		

(*): gemiddelde waarden over een bemonsteringsperiode van minimaal 0,5 en maximaal 8 uur.

De bepaling van de totaalsamenstelling van de afvalstoffen bij de toevoer wordt gebruikt als maat voor de te verwachten emissiegrenswaarden.

1.3 Beschrijving onderzoek

In deze studie zullen een 50-tal diverse afvalstoffen geanalyseerd worden in het laboratorium zowel met ED-XRF als met ICP-AES na zuurdestructie. Hierbij zal steeds de meest geschikte monstervoorbehandelingsprocedure worden toegepast. Deze omvat voor beide analysemethoden een homogenisatie van het afvalmonster, een droging bij 105°C en een verfijning met een maalmolen. Voor de ED-XRF analyse zullen de voorbehandelde afvalmonsters als poeder of als tablet (na menging van 10% wax) geanalyseerd worden. Het gebruikte ED-XRF toestel is een high performance X-LAB2000 spectrometer van Spectro. Het vergelijkend onderzoek zal specifiek gericht zijn op de parameters welke zijn opgenomen in de diverse analysepakketten van de erkenningen.

De range aan commercieelbaar beschikbare ED-XRF systemen is breed gaande van draagbare, over bench top systemen to high performance systemen. In het kader van de inzetbaarheid van ED-XRF als screeningstechniek voor de verificatie van op een stortplaats afgeleverde lading zal op basis van literatuurgegevens een overzicht gegeven worden van de commercieel beschikbare ED-XRF technieken die hiervoor kunnen ingezet worden.

2 COMMERCIEEL BESCHIKBARE ED-XRF MEETSYSTEMEN

Het gamma aan commercieel beschikbare ED-XRF systemen is uitgebreid gaande van draagbare veldanalysemeettoestellen, naar bench top systemen, tot high performance laboratoriumtoestellen. De performantie van de verschillende toestellen is sterk afhankelijk van de opbouw van het toestel waarbij de X-stralenbron, de gebruikte filters en targets, en de detector de bepalende factoren zijn.²

Als veldanalysetechniek komen de draagbare ED-XRF systemen en de bench top systemen, geplaatst in een (mobiel) labo, in aanmerking. Commercieel beschikbare draagbare ED-XRF systemen op de Europese markt zijn weergegeven in Figuur 1. In draagbare ED-XRF systemen worden meestal radioactieve isotopen (Fe⁵⁵, Cd¹⁰⁹ en Am²⁴¹) aangewend als X-stralenbron. Het gebruik van deze bronnen vereist een veiligheidsopleiding met aandacht voor het afschermen van de radioactieve stralingen. Voor het bezit en het gebruik van deze bronnen zijn toelatingsdocumenten vereist van de overheidsinstanties omwille van de continue straling die geproduceerd wordt. Bovendien moeten de radioisotopen bij vervanging op een veilige manier worden geborgen. De nieuwe generatie veldanalysesystemen is miniatuur uitgerust met een X-stralenbuis, wat de gebruiksvriendelijkheid en de veiligheid van het toestel ten goede komt. Bij deze systemen worden enkel X-stralen gegenereerd als een spanningsveld wordt aangelegd.²

Gezien het feit dat bij de veldanalysesystemen de toegepaste monstervoorbehandeling meestal zeer beperkt is (geen droging en verfijning van het monster) kunnen de analyseresultaten enkel als indicatief (kwalitatief) beschouwd worden.

De kostprijs van de verschillende systemen ligt in de grootte-orde van 25.000-50.000 euro. De werkingskosten zijn beperkt.

Figuur 1: Draagbare ED-XRF spectrometer : (A) Niton met radio-actieve isotopen; (B,C,D) ED-XRF met miniatuur X-stralenbuis, resp. Niton, Oxford en Metorex

Hou *et al.*⁴ geeft een overzicht van de laatste ontwikkelingen van de draagbare ED-XRF systemen. Enerzijds worden de technieken beschreven en anderzijds worden de toepassingsmogelijkheden voor verschillende monstertypes beschreven. Het gebruik van de draagbare XRF systemen *on-site* voor een snelle element screening blijft één van de grootste voordelen van dit systeem, niettegenstaande de mindere precisie en accuraatheid van het systeem, alsook de hogere detectielimieten.

In Figuur 2 is een voorbeeld gegeven van een **Bench-top ED-XRF systeem** uitgerust met gepolariseerd licht. Het innovatieve aspect aan deze techniek is het gebruik van gepolariseerd licht en targets tussen de X-stralenbron (X-stralenbuis, geen radio-actieve istotopen) en de detector voor de reductie van het achtergrondsignaal, resulterend in een significante verlaging van de detectielimieten. Dit systeem biedt de mogelijkheid om in een mobiele meetwagen of in het laboratorium zelf te gebruiken. Bij het uitvoeren van laboratorium analysen kan een geschikte monstervoorbehandeling (drogen, homogeniseren, malen,...) worden uitgevoerd waardoor de juistheid van het analyseresultaat significant verbetert.

De kostprijs van de verschillende systemen ligt in de grootte-orde van 50.000 euro. De werkingskosten zijn beperkt.

Figuur 2: Bench top ED-XRF spectrometer

De beste performantie wordt bekomen met de **High Performance ED-XRF systemen** uitgerust met gepolariseerd licht. Op de commerciële markt zijn 2 vergelijkbare systemen beschikbaar nl. Epsilon 5 (Panalytical) en X-LAB2000 (Spectro). De combinatie van een geschikte monstervoorbehandeling van het afvalmonster met een analyse uitgevoerd op de meest optimale configuratie van het ED-XRF systeem laten toe om reproduceerbare en betrouwbare analysen van monsters uit te voeren.

De kostprijs van de verschillende systemen ligt in de grootte-orde van 100.000-150.000 euro. De werkingskosten zijn beperkt.

Figuur 3: High Performance ED-XRF systemen met gepolariseerd licht

De inzetbaarheid van XRF (energie dispersieve en golflengte dispersieve) voor de karakterisatie van afvalstoffen wordt meermaals in de literatuur beschreven.^{5,6,7} In de verschillende beschreven applicaties worden de voordelen van XRF als niet destrcutieve analysetechniek benadrukt. Hierbij wordt telkens aandacht besteed aan de monstervoorbehandelingsprocedure. De monsters worden steeds gedroogd en fijngemalen, vooraleer de analysen uit te voeren.

3 BESCHRIJVING TOEGEPASTE ANALYSETECHNIEK

Zoals hierboven beschreven kunnen verschillende types van ED-XRF systemen ingezet worden. Omdat de inzetbaarheid van de ED-XRF spectrometer wordt geëvalueerd als alternatief voor het uitvoeren van metaalanalysen, zal in de eerste fase het meest performante syteem gevalideerd worden. Afhankelijk van de bekomen resultaten kan dan afgeleid worden of de andere systemen eveneens kunnen aangewend worden voor het uitvoeren van metaalanalysen. Indien immers het meest performante systeem niet voldoet, zullen de eenvoudigere spectrometers ook niet ingezet kunnen worden.

De meest performante systemen zijn de High Performance ED-XRF spectrometers. Het innovatieve aspect aan deze systemen is het gebruik van gepolariseerd licht en targets tussen de X-stralenbron en de detector voor de reductie van het achtergrondsignaal, resulterend in een significante verlaging van de detectielimieten.

3.1 ED-XRF spectrometer

Voor het uitvoeren van de kwantitatieve ED-XRF analysen in het VITO laboratorium werd de validatie uitgevoerd met de High Performance ED-XRF spectrometer (X-LAB2000) van de firma Spectro. Het systeem is uitgerust met een vooraf gekalibreerd applicatieprogramma TurboQuant welke toelaat om automatisch matrixcorrecties uit te voeren op een grote diversiteit aan monsters.^{8,9}

Figuur 4: X-LAB 2000 ED-XRF spectrometer (Spectro)

De XRF spectrometer is opgebouwd uit:

- X-stralenbron voor het genereren van X-stralen
- Monstercompartiment
- Targets
- Detectiesysteem
- Data processor

Een schematische voorstelling van de opbouw van de X-LAB 2000 spectrometer is weergegeven in Figuur 5.¹⁰

Figuur 5: Schematische voorstelling van de ED-XRF spectrometer

3.1.1 X-stralenbuis

De X-Lab2000 is uitgerust met een 400 W vermogen eindvenster X-stralenbuis met als anodemateriaal palladium (Pd). Door het aanleggen van een spanningsveld worden elektronen afkomstig van een filament, gebombardeerd op de anode (Pd). De interactie van de elektronen met de atomen van de anode genereren X-stralen die langs een Be-venster de X-stralenbuis verlaten.

3.1.2 Monstercompartiment

Het ED-XRF systeem is voorzien van een carrousel voor het positioneren van meerdere monsters. Bij analyse van monsters met een diameter van 40 resp 32 mm zijn er 12 resp 20 posities beschikbaar. De analysen in het VITO laboratorium werden allemaal uitgevoerd op monsters met een diameter van 40 mm.

Optioneel is het mogelijk om een systeem te voorzien van een externe carrousel waarbij tot 100 monsters kunnen gepositioneerd worden.

Figuur 6: Monstercompartiment

3.1.3 Targets

In de Spectro X-LAB 2000 kunnen 8 targets gepositioneerd worden. Er bestaan 2 types van targets:

- Bragg en Barkla polarisators zorgen door polarisatie van de strooistraling voor de reductie van de achtergrondstraling welke afkomstig is van de verstrooiing van geëxciteerde straling op het monster in de richting van de detector (Figuur 7). Reductie van de achtergrondstraling resulteert in een significante verlaging van de

aantoonbaarheidsgrenzen en de meettijd is sterk gereduceerd omdat de intensiteit van de strooistraling is verminderd. Bv. HOPG kristal (Bragg), B_4C kristal (Barkla), Al_2O_3 kristal (Barkla).

- Secundaire targets hebben de eigenschap om effectief en selectief bepaalde energiegebieden te exciteren. Bv. Mo target, Co target. Het Co target bv. laat een optimale excitatie van de elementen K tot Mn volgens atoomnummer toe, onafhankelijk van het Fe gehalte in het monster. Een Fe filter gepositioneerd voor het target absorbeert de Co K-beta straling zodat Fe niet kan worden geëxciteerd door deze spectraallijn. D.w.z. dat bij een hoog Fe gehalte in een monster het meetkanaal niet overbelast wordt, resulterend in een betere analytische bepaling van de elementen K tot Mn.

Figuur 7: Excitatie met gepolariseerd licht

De gebruikte targets bij deze studie zijn:

- Mo target: bepalen van het type matrix (absorptiecoëfficiënt)
- HOPG target (Bragg): Na Cl (K-straling)
- Co-target: K Mn (K-straling), Cd La (L-straling)
- Pd-target: Fe Zr (K-straling), Hf Bi (L-straling)
- Al₂O₃-target (Barkla): Mo Ba (K-straling)

Het element Be kan niet bepaald worden met ED-XRF.

3.1.4 Detectiesysteem

De X-LAB 2000 spectrometer is uitgerust met een Si(Li) halfgeleider detector welke gekoeld wordt met vloeibare N_2 tot -196°C. Het systeem is voorzien van een 20 l stikstoftank welke wekelijks dient bijgevuld te worden.

De detectoren onderscheiden zich van elkaar door hun energieresolutie. De energieresolutie van een detector wordt uitgedrukt ten opzichte van de piekbreedte gemeten op halve hoogte van de MnK α piek bij 5.89 keV. De resolutie van bovenstaande detector is < 150 eV.

3.1.5 Data processor

In de ED-XRF spectrometer gebeurt de dispersie (=selectie van een bepaalde energie) en het tellen van het aantal X-stralen (van een bepaalde energie) in één stap. De data processor bevat een Multi Channel Analyser (MCA). Deze MCA ontvangt de pulsen van de detector en sorteert deze in kanalen volgens hun energie. De MCA telt de pulsen per seconde om de

hoogte van een piek in het spectrum te bepalen welke een maat is voor de concentratie van het te bepalen element.

De spectrometer is voorzien van een energiekalibratiemethode om m.b.v. een kalibratiemonster wekelijks een energiekalibratie uit te voeren.

3.1.6 Meetmethode

De toegepaste meetmethode voor het analyseren van de afvalmonsters is samengevat in Tabel 1. De meetmethode is opgebouwd uit 5 metingen waarbij telkens een welbepaald target wordt geselecteerd. Alle parameters, noodzakelijk voor het uitvoeren van de XRF analyse zijn softwarematig gestuurd waardoor alle elementen in 1 analyserun worden gemeten. Een analyserun duurt ongeveer 30 minuten. De spectra van een gecertificeerd vliegas gemeten met de verschillende targets zijn weergegeven in Figuur 8.

Figuur 8: ED-XRF spectra van een gecertificeerd vliegas N1633b (a) Mo target, (b) Al_2O_3 target, (c) Pd target, (d) Co target

	Meting 1	Meting 2	Meting 3	Meting 4	Meting 5
Target	Mo	Al_2O_3	Pd	Co-target	HOPG
		(Barkla)			(Bragg)
Voltage (kV)	40	53	43	35	20
Current (mA)	1.5	5	6	2	5
Meettijd (sec)	300	600	300	300	300
Elementen K-straling	Cr – Zr Hf – U	Mo - Ba	Fe – Mo Hf - U	K – Mn Cd - La	Na – Sr Y - Hf
E struing	in c		in c	Cu Lu	1 111
Vlarea elem.					
K-straling	Co, Ni, Cu,	Cd, Ba,	Mo	V, Cr, Mn	
	Zn, As, Se	Sn, Sb			
L-straling	Pb, Hg, Tl				

Tabel 1: Parameters van de meetmethode

3.1.7 Kalibratieprogramma

De X-Lab 2000 spectrometer is uitgerust met een vooraf gekalibreerd applicatieprogramma TurboQuant voor de (semi)kwantitatieve analyse van monsters. Het programma biedt de mogelijkheid om automatisch matrixcorrecties uit te voeren. Om verschillende matrices in 1 kalibratie te omvatten, dienen de gemeten intensiteiten gecorrigeerd te worden voor de matrixinvloed. Dit kan doorgevoerd worden m.b.v. de Compton methode. Deze methode gaat ervan uit dat alle elementen in een monster bijdragen tot de Compton verstrooiing van de geëxciteerde straling. Dit betekent dat de intensiteit van de Compton piek gerelateerd is met de massa-absorptiecoëfficiënt van het monster. Dit principe wordt aangewend om voor een onbekend monster de massa-absorptiecoëfficiënt te berekenen uitgaande van de Compton piek resulterend in de correctie van de intensiteit van de elementlijnen voor de massa-absorptie.

Voor het op punt stellen van de kalibratie wordt de Fundamentele Parameter (FMP) benadering gebruikt. Gebaseerd op de gecorrigeerde intensiteiten wordt voor elk element de relatie tussen de intensiteit en de concentratie berekend. Het kalibratieprogramma is door de firma Spectro geoptimaliseerd om geologische monsters te analyseren. Door Spectro werden ± 40 referentiestandaarden (geologische en bodemmonsters) geanalyseerd waarna het kalibratieprogramma voor een brede range aan elementen werd op punt gesteld.

De evaluatie van de ED-XRF spectrometer in het VITO laboratorium werd uitgevoerd gebruik makend van het beschikbare applicatieprogramma voor geologische monsters ('Geo') . Enkel voor het element Cr werd een optimalisatie uitgevoerd. Met het initïele meetprogramma 'Geo' vertoonden de preliminaire resultaten voor Cr sterke afwijkingen t.o.v. de referentiewaarde. De kalibratie voor het element Cr werd bijgevolg geoptimaliseerd door toevoeging van de data van enkele referentiematerialen (N2709, N2711, GBW07404, GBW07411, GBW07301 en GBW07307). Alle resultaten van Cr, weergegeven in dit rapport, werden bepaald m.b.v. het geoptimaliseerde 'Geo' applicatieprogramma.

3.2 Monstervoorbehandeling bij ED-XRF analysen

Voor het uitvoeren van kwantitatieve ED-XRF analysen in het laboratorium is het noodzakelijk om, voorafgaandelijk aan de analyse, het bodemmonster te drogen bij 105° C en fijn te malen met een maalmolen zodat de korrelgrootte kleiner is dan 250 µm. Het fijngemalen bodemmonster kan vervolgens als poeder geanalyseerd worden of geperst worden tot een tablet. Voor het aanmaken van een tablet (diameter = 40 mm) wordt aan 10 g fijngemalen bodemmonster 10% waxⁱ toegevoegd.

Procedure aanmaak tabletten:

Aan 10 g fijngemalen bodemmonster wordt 1 g wax toegevoegd. Dit mengsel wordt vervolgens gehomogeniseerd met behulp van een trilmolen. De trilmolen laat telkens 2 maalbekers trillen aan een ingestelde frequentie en tijd. De maalbekers bevatten het te analyseren bodemstaal en 2 keramische parels die de homogenisatie bevorderen. Het gebruik van deze trilmolen komt de reproduceerbaarheid van de metingen ten goede omdat een goede homogeniteit wordt verkregen. Het gehomogeniseerde mengsel (wax + monster) wordt vervolgens in een metalen houder tot een tablet geperst onder een constante druk van 25 ton.

Figuur 9: Trilmolen

De ronde tabletten zijn ongeveer 0.5 cm dik en hebben een diameter van 40 mm.ⁱⁱ De tabletten worden bewaard in een exsicator zodat ze geen vocht opnemen. Een belangrijk voordeel is dat de XRF-metingen niet destructief zijn waardoor een staal meerdere malen kan geanalyseerd worden.

Bij analysen als poeder wordt het gedroogde en verfijnde monster in een XRF monsterbeker (Figuur 10) gebracht voorzien van een dunne folie (bv. 2.5 µm Mylar).

ⁱ Wax is een organische koolwaterstofverbinding die onder andere paraffine bevat. De wax stoort niet bij de metingen omdat C, H en O niet kunnen gemeten worden met XRF.

ⁱⁱ De ED-XRF spectrometer biedt eveneens de mogelijkheid om tabletten van 23 mm diameter te analyseren.

Figuur 10: XRF monsterbeker

3.3 ICP-AES analyse

De afvalmonsters werden na drogen bij 105°C en na fijnmalen met de kogelmolen gedestrueerd met HF:HNO₃:HCl volgens CMA/2/II/A.3. De metaalconcentraties van de gedestrueerde monsters werden bepaald met inductief gekoppeld plasma – optische emissiespectrometrie [Optima 3000 – Perkin Elmer] volgens CMA/2/I/B.1. De ICP-AES instrumentele instellingen zijn beschreven in Tabel 2.

Instrument	Optima 3000 (Perkin Elmer)			
Instrument setting	Gasdebiet verstuiver	0.55 l/min		
	RF Vermogen	1400 W		
	Debiet plasma 20 l/min			
	Debiet Auxiliary	0.5 l/min		
Monsterintroductie	Verstuiver	Gem-cone		
	Debiet monster	1.5 ml/min		
	Verstuifkamer	Cycloon		
Meetparameters	Plasma view	Axiaal		
	Mode	Piekhoogte		

Tabel 2: ICP-AES instrumentele instellingen

4 VERGELIJKENDE ED-XRF EN ICP-AES ANALYSEN VAN AFVALSTOFFEN

4.1 Analyse van referentiemonsters (vliegassen) met ED-XRF

Als validatie van de kalibratie van de diverse metalen werden 3 vliegas referentiemonsters geanalyseerd met ED-XRF:

- N1633b: Coal fly ash: gecertificeerde waarden voor alle gerapporteerde elementen
- N2691: Coal fly ash: gecertificeerde waarde voor de matrixelementen, nietgecertifeerde waarden voor de andere metaalconcentraties
- CRM 038: Fly ash from pulverised coal: gecertificeerde waarden voor As, Cd, Co, Cu, Mn, Pb en Zn; niet-gecertificeerde waarden voor Cr, Ni en V

Van de verschillende referentiematerialen werd telkens een tablet aangemaakt en geanalyseerd volgens het meetprogramma beschreven in Tabel 1. De ED-XRF resultaten zijn weergegeven in Figuur 11 t.e.m. Figuur 15 waarbij een opsplitsing werd gemaakt naar de lage metaalconcentraties toe en de matrixelementen.

Legende bij de figuren: X-as: elementen Y-as links: % recovery (weergegeven door staafdiagramma) Y-as rechts: referentiewaarde (weergegeven door datapunt)

Figuur 11: ED-XRF resultaten van het referentiemonster N1633b (vliegas)

Voor de diverse elementen (zowel matrix- als sporenelementen) worden voor het vliegas N1633b aanvaardbare terugvindingsgraden bekomen gelegen tussen 88 en 117% waarbij voor de meeste elementen afwijkingen lager dan 10% t.o.v. de referentiewaarde worden bekomen.

Figuur 12: ED-XRF resultaten (matrixelementen) van het referentiemonster N1633b

Figuur 13: ED-XRF resultaten van het referentiemonster N2691 (vliegas)

De referentiewaarden van de metalen voor het vliegas N2691 zijn indicatieve meetwaarden. Niettegenstaande worden goede terugvindingsgraden bekomen met uitzondering van As (75%) en Pb (132%). Echter ligt het concentratieniveau voor deze 2 elementen laag (\pm 30 mg/kg).

Bij de bepaling van de matrixelementen worden voor Al en Si lagere rendementen (\pm 75%) bekomen. Het feit dat de monsters werden geanalyseerd als tablet, is een mogelijke verklaring van deze afwijking. Bij elementen met een lage atoommassa is het aangewezen om de monsters te analyseren als glasparel om alzo mineralogische effecten te elimineren.

Figuur 14: ED-XRF resultaten (matrixelementen) van het referentiemonster N2691 (vliegas)

Bij analyse van CRM038 worden voor de verschillende metalen goede terugvindingsgraden bekomen. Enkel voor het element Co ligt de gemeten waarde 25% boven de gecertificeerde referentiewaarde.

Figuur 15: ED-XRF resultaten van het referentiemonster CRM038 (vliegas)

Besluit: Gebaseerd op de analyse van vliegas referentiemonsters kan gesteld worden dat de verschillende kalibratielijnen van de ED-XRF methode kunnen gebruikt worden voor de verdere analyse en validatie van afvalstoffen. Voor de diverse te toetsen parameters ligt de afwijking van de ED-XRF meetwaarde t.ov. de referentiewaarde binnen 20% (met uitzondering van As, Pb en Cr bij lage concentraties (30 - 50 mg/kg)). Bij de meeste elementen in de vliegasmonsters ligt de juistheid zelfs binnen 10%.

4.2 Analyse van ringtestmonsters

Aansluitend aan de analyse van bovenstaande referentiemonsters werden ringtestmonsters van afvalstoffen geanalyseerd. Deze ringtestmonsters werden gedistribueerd voor een interlaboratorium ringtest op Europees niveau in het kader van de validatie van de Europese normmethode EN13656 welke de zuurdestructie met HF:HNO₃:HCl beschrijft.¹¹ Bijgevolg zijn van deze ringtestmonster metaalconcentraties ter beschikking welke bepaald zijn met ICP-AES (of gelijkwaardige techniek) na zuurdestructie met HF:HNO₃:HCl.

De geanalyseerde monsters zijn:

- CEN 6/99 Vliegas van een afvalverbrandingsoven
- CEN 7/99 Bodemas van een afvalverbrandingsoven
- CEN 8/99 Inkt afvalslib
- CEN 9/99 Rioolwaterzuiveringslib (belast met metalen van electronische toestellen)
- CEN 10/99 Rioolwaterzuiveringslib (BCR146R)
- CEN 11/99 As van een afvalverbrandingsoven (BCR 176)

De verschillende monsters werden geanalyseerd als poeder en als tablet. Bij visuele evaluatie van de tabletten waren er bij sommige monsters duidelijk heterogeniteiten waarneembaar (slechte menging monster/wax). Uit de ED-XRF resultaten zal blijken dat dit een significante invloed heeft op de juistheid van de analyseresultaten. Analysen uitgevoerd als poeder geven in deze gevallen duidelijk juistere resultaten.

4.2.1 Resultaten CEN 10/99 (BCR146R)

Het ringtestmonster CEN 10/99 is een (deels) gecertificeerd referentiemonster BCR 146R. Bijgevolg zijn van dit monster theoretische waarden ter beschikking, alsook de analyseresultaten bekomen na destructie met HF:HNO₃:HCl. In Tabel 3 zijn de analyseresultaten met de bijhorende terugvindingsgraad weergegeven voor de verschillende analysetechnieken (ICP-AES na HF:HNO₃:HCl destructie, ED-XRF meting als tablet en ED-XRF meting als poeder).

Uit de resultaten kan afgeleid worden dat bij ED-XRF analyse van het monster als tablet aanvaardbare terugvindingsgraden worden bekomen voor de verschillende elementen (met uitzondering van Co); en dit zowel voor de genormeerde elementen in het kader van afvalstofanalysen als voor de matrixelementen. De resultaten bekomen met ED-XRF (tablet) zijn niet significant verschillend met de resultaten bekomen na ICP-AES analyse. Voor het element Ag waar er geen theoretische waarde ter beschikking is, wordt een vergelijkbare meetwaarde bekomen voor beiden analysetechnnieken.

Bij de ED-XRF analyse als poeder worden voor sommige elementen minder goede terugvindingsgraden (50 tot 70%) bekomen. Voor de elementen Ba, Cd, Sb, Sn en Ag wordt een significante daling van de terugvindingsgraad waargenomen. Deze elementen worden allen bepaald m.b.v. het Al_2O_3 target.

	Theor.w	ICP-AES	% rec.	EDXRF	% rec.	EDXRF	% rec.
				tablet		poeder	
	mg/kg ds	mg/kg ds		mg/kg ds		mg/kg ds	
As	6,3	6,3	100	7,8	124	14,6	232
Ba	735,0	660,4	90	759,4	103	449,6	61
Cd	18,8	16,3	87	21,2	113	13,4	71
Co	7,4	8,0	108	18,7	253	8,3	112
Cr	196,0	177,3	90	198,8	101	195,5	100
Cu	837,9	803,6	96	846,2	101	807,1	96
Hg	8,6	7,1	82	9,8	114	7,8	90
Mn	323,5	302,4	93	312,5	97	298,4	92
Mo	-	7,8		11		8,5	
Ni	69,7	64,7	93	64,3	92	62,9	90
Pb	608,7	552,4	91	590,6	97	536	88
Sb	16,3	12,6	78	18,6	114	10	62
Se	-	5,6		4,3		4,6	
Sn	95,8	77,1	81	98,5	103	50,1	52
T1	-	0,5		-		-	
V	42,7	38,5	90	35,1	82	35	82
Zn	3061	2825,4	92	2887	94	2749	90
Ag	-	215,0		217,1		114,9	
Sr	1179	987	84	1032	88	974	83
Al	25130	28572	114	27320	109	22840	91
Ca	154600	134192	87	141600	92	139600	90
Fe	16100	14289	89	16730	104	16720	104
Κ	5240	5378	103	4867	93	4667	89
Р	25600	27319	107	27000	105	15420	60
S	10620	10049	95	9986	94	16280	153
Ti	2771	2091	75	2443	88	2469	89

Tabel 3: Analyseresultaten van ringtestmonster CEN 10/99 (BCR146R)

Italic: niet gecertificeerde referentiewaarden

4.2.2 Resultaten CEN 11/99 (BCR 176)

Terwijl CEN 10/99 (BCR 143R) naar destructie toe een 'gemakkelijk' destrueerbaar monster is, is het monster CEN 11/99 (BCR 176) veel moeilijker destrueerbaar omdat het bestaat uit complexe silicaten en oxiden die moeilijk oplosbaar zijn. Gezien het feit dat ED-XRF een niet-destructieve techniek is, zullen steeds totaalgehalten bekomen werden terwijl voor ICP-AES na zuurdestructie mogelijk verlaagde terugvindingsgraden kunnen voorkomen. In Tabel 4 zijn de analyseresultaten met de bijhorende terugvindingsgraad weergegeven voor de verschillende analysetechnieken (ICP-AES na HF:HNO₃:HCl destructie en ED-XRF meting als tablet).

Uit de resultaten komt naar voren dat voor de ED-XRF analyse aanvaardbare rendementen worden bekomen voor de metalen Ba, Cd, Cr, Cu, Ni, Pb, Sb, Se, V, Zn, Ag en Sr. Voor het element Cr wordt bij de ED-XRF analysen zelfs 90% terugvindingsgraad bekomen, waarbij bij ICP-AES slechts 49% wordt bekomen. Voor de elementen As, Co, Hg en Mn worden bij de ED-XRF analyse hogere afwijkingen bekomen t.o.v. de theoretische waarde in vergelijking met ICP-AES.

Bij bepaling van de matrixelementen (Al, Ca, Fe, K) wordt bij de ED-XRF analyse een hogere terugvindingsgraad bekomen dan bij de ICP-AES analyse.

	Theor.w	ICP-AES	% rec.	EDXRF	% rec.
				tablet	
	mg/kg ds	mg/kg ds		mg/kg ds	
As	93,3	89,5	96	47,0	50
Ba	4500	3843	85	5078	113
Cd	470	469	100	499	106
Co	31	28,6	93	47,9	155
Cr	863	423,1	49	778	90
Cu	1302	1189	91	1295	99
Hg	31,4	31,5	100	48,6	155
Mn	1500	1417,0	94	1071	71
Mo	-	-		49,6	
Ni	123,5	124,7	101	125,7	102
Pb	10870	10651	98	10260	94
Sb	412	390	95	460	112
Se	41,2	37,3	91	39,8	97
Sn	-	3144		6680	
Tl	2,9	3,1	107	-	
V	41,0	48,8	119	-	
Zn	25770	25784	100	24290	94
Ag	60,0	-	0	68,9	115
Sr	433	387	89	393	91
Al	101600	65182	64	86900	86
Ca	88016	71856	82	81200	92
Fe	21300	21900	103	21360	100
Κ	44986	35022	78	37750	84
Р	5542	-		4706	85
S	44600	-		31110	70
Ti	8520	-		9027	106

Tabel 4: Analyseresultaten van ringtestmonster CEN 11/99 (BCR176)

4.2.3 Resultaten CEN 6/99 (vliegas)

Het ringtestmonster CEN 6/99 is een vliegas afkomstig van een afvalverbrandingsinstallatie. Van dit monster zijn geen referentiewaarden ter beschikking. De terugvindingsgraden van de ED-XRF analyseresultaten werden berekend t.o.v. de ICP-AES analyseresultaten na HF:HNO₃:HCl destructie. In Tabel 5 zijn de bekomen waarden weergegeven van de ED-XRF meting als tablet en de ED-XRF meting als poeder, en vergeleken met het ICP-AES interlaboratorium ringtestresultaat.

Op basis van deze resultaten kunnen vergelijkbare besluiten geformuleerd worden als voor het referentiemonster BCR176.

Voor de metalen Cd, Cu, Mn, Ni, Pb, Sb, Se, V, Zn en Sr zijn de ED-XRF resultaten in overeenstemming met de ICP-AES resultaten. Omwille van het feit dat bij ICP-AES analysen voor Ba en Cr (mogelijk ook Sn) een onvolledige destructie kan optreden (% rec. bij BCR 176 bedroeg resp. 85 en 49%), worden bij de ED-XRF metingen hogere concentraties voor deze elementen gemeten. Voor de elementen Co en Hg zijn de

afwijkingen van de ED-XRF meting met de ringtestwaarden vrij hoog. De matrixelementen daarentegen (Al, Ca, Fe, K, S en Ti) welke geanalyseerd werden als tablet met ED-XRF, resulteren in hoge terugvindingsgraden.

	ICP-AES	EDXRF	% rec.	EDXRF	% rec.
		tablet	EDXRF tov	poeder	EDXRF tov
	mg/kg ds	mg/kg ds	ICP-AES	mg/kg ds	ICP-AES
As	39,9	29,0	73	68	170
Ba	984,1	1426	145	1330	135
Cd	435,6	484,9	111	440,8	101
Co	30,5	46,1	151	18,6	61
Cr	525,4	900,4	171	819,2	156
Cu	2031,8	2053	101	1943	96
Hg	5,7	19,2	337	9,7	170
Mn	540	494	91	373	69
Мо	27,8	27,8	100	24,3	87
Ni	73,6	57,0	77	55,3	75
Pb	10042	10260	102	9634	96
Sb	1245	1436	115	1140	92
Se	31,0	32,7	105	34,6	112
Sn	1479	3155	213	2334	158
Tl	8,2	-		-	
V	25,6	19,8	77	15,4	
Zn	29781	27380	92	25500	86
Ag	298,1	413,6	139	298,4	100
Sr	265,9	294,0	111	281,4	106
Al	40103	37120	93	20300	51
Ca	137833	140900	102	128800	93
Fe	10097	10007	99	9498	94
Κ	65586	73220	112	66040	101
Р	5410	3646	67	1238	23
S	39249	32520	83	33840	86
Ti	8773	7622	87	7162	82

Tabel 5: Analyseresultaten van ringtestmonster CEN 6/99 (vliegas)

4.2.4 Resultaten CEN 7/99 (Bodemas)

Het ringtestmonster CEN 7/99 is een bodemas afkomstig van een afvalverbrandingsinstallatie. Van dit monster zijn geen referentiewaarden ter beschikking. De terugvindingsgraden van de ED-XRF analyseresultaten werden berekend t.o.v. de ICP-AES analyseresultaten na HF:HNO₃:HCl destructie. In Tabel 6 zijn de bekomen waarden weergegeven van de ED-XRF meting als tablet en de ED-XRF meting als poeder, en vergeleken met het ICP-AES interlaboratorium ringtestresultaat.

Analoge besluiten als de vorige ringtestmonsters kunnen afgeleid worden. Voor de metalen Cd, Cu, Mn, Mo, Ni, Pb, Se, Zn en Sr zijn de ED-XRF resultaten in overeenstemming met de ICP-AES resultaten. Omdat bij ICP-AES analysen voor Ba en Cr (mogelijk ook Sn) een onvolledige destructie kan optreden (% rec. bij BCR 176 bedroeg resp. 85 en 49%), worden in vergelijking met ICP-AES bij de ED-XRF metingen hogere concentraties voor deze elementen gemeten. Voor de elementen Co en Hg zijn de afwijkingen van de ED-XRF meting met de ringtestwaarden vrij hoog. De matrixelementen daarentegen (Al, Ca, Fe, K, S

en Ti) welke geanalyseerd werden als tablet met ED-XRF, resulteren in hoge terugvindingsgraden.

	ICP-AES	EDXRF	% rec.	EDXRF	% rec.
		tablet	EDXRF tov	poeder	EDXRF tov
	mg/kg ds	mg/kg ds	ICP-AES	mg/kg ds	ICP-AES
As	83,4	55,0	66	84	101
Ba	2504	4878	195	4428	177
Cd	532,2	605,9	114	506,5	95
Co	34,9	75,7	217	39,3	113
Cr	298,2	804,3	270	741,1	249
Cu	1279	1301	102	1191	93
Hg	30,3	52,0	172	38,7	128
Mn	1308	1057	81	899	69
Mo	44,8	49,0	109	40,5	91
Ni	114,6	114,5	100	108,3	95
Pb	11359	11550	102	10620	93
Sb	322,6	440,0	136	321,4	100
Se	42,5	40,5	95	39,5	93
Sn	2546	6245	245	4451	175
T1	3,2	-		-	
V	42,3	-		-	
Zn	27535	25830	94	23640	86
Ag	53,6	84,5	158	49,3	92
Sr	341,8	388,9	114	366,4	107
Al	73780	85710	116	67200	91
Ca	69042	85040	123	79120	115
Fe	20217	20770	103	19310	96
Κ	37319	38950	104	35170	94
Р	6115	4810	79	2073	34
S	34020	33970	100	45680	134
Ti	8679	9052	104	8517	98

Tabel 6: Analyseresultaten van ringtestmonster CEN 7/99 (bodemas)

4.2.5 Resultaten CEN 8/99 (Ink waste)

Het ringtestmonster CEN 8/99 is een inkt afvalslib. Van dit monster zijn geen referentiewaarden ter beschikking. De terugvindingsgraden van de ED-XRF analyseresultaten werden berekend t.o.v. de ICP-AES analyseresultaten na HF:HNO₃:HCl destructie. In Tabel 7 zijn de bekomen waarden weergegeven van de ED-XRF meting als tablet en de ED-XRF meting als poeder, en vergeleken met het ICP-AES interlaboratorium ringtestresultaat.

De ED-XRF resultaten geanalyseerd als tablet geven zeer afwijkende meetwaarden in vergelijking met de ICP-AES resultaten. Deze afwijkingen kunnen toegeschreven worden aan de slechte menging wax/monster bij de aanmaak van het tablet. Zoals weergegeven in Figuur 16 resulteert dit in een heterogeen meetoppervlak. De ED-XRF analysen als poeder daarentegen resulteren in vergelijkbare terugvindingsgraden als bij de andere monsters. De bekomen resultaten bevestigen nogmaals dat de monstervoorbehandeling een cruciale rol speelt voor het bekomen van juiste analyseresultaten.

	ICP-AES	EDXRF	% rec.	EDXRF	% rec.
		tablet	EDXRF tov	poeder	EDXRF tov
	mg/kg ds	mg/kg ds	ICP-AES	mg/kg ds	ICP-AES
As	6,8	5,4	79	18,9	278
Ba	100,5	1465	1458	91,3	91
Cd	1,0	1,1	110	-	
Co	14,2	-		-	
Cr	3612	173	5	3172	88
Cu	12429	7,6	0,1	11580	93
Hg	1,9	-		-	
Mn	530,5	717	135	484	91
Мо	5,0	2,3	46	3,6	72
Ni	23,0	7,6	33	17,2	75
Pb	5894	46,1	1	5390	91
Sb	58,6	21,2	36	1,5	3
Se	7,4	-		-	
Sn	2,1	16,6	790	1,5	71
Tl	2,2	0,6	27	-	
V	14,6	-		19,2	
Zn	1203	941,3	78	1069	89
Ag	1,7	1,5	88	0,4	24
Sr	116,7	153,0	131	118,5	102
Al	211	3358	1590	-	
Ca	107315	4386	4	94180	88
Fe	74271	3665	5	77120	104
Κ	965	4386	454	788	82
Р	14005	3269	23	6075	43
S	33032	176	1	39060	118
Ti	232	3453	1488	255	110

Tabel 7: Analyseresultaten van ringtestmonster CEN 8/99 (inkt afvalslib)

Figuur 16: Ringtestmonster CEN 8/99

Figuur 17: ED-XRF spectra van een bodemmonster (blauw) en monster CEN 8/99 (roos)

In Figuur 17 is het ED-XRF spectrum (poeder analyse) afgebeeld van het ringtestmonster CEN 8/99 tesamen met een bodemmonster. Niettegenstaande het complexe spectrum van het ringtestmonster in vergelijking met het bodemmonster, is het ED-XRF applicatieprogramma in staat om de verschillende pieken/elementen en de bijhorende intensiteiten/concentraties te onderscheiden.

4.2.6 Resultaten CEN 9/99 (electronic waste)

Het ringtestmonster CEN 9/99 is een afvalslib belast met metalen afkomstig van electronische toestellen. Van dit monster zijn geen referentiewaarden ter beschikking. De terugvindingsgraden van de ED-XRF analyseresultaten werden berekend t.o.v. de ICP-AES analyseresultaten na HF:HNO₃:HCl destructie. In Tabel 8 zijn de bekomen waarden weergegeven van de ED-XRF meting als tablet en de ED-XRF meting als poeder, en vergeleken met het ICP-AES interlaboratorium ringtestresultaat.

Gezien het lage concentratieniveau van een aantal elementen kunnen deze niet gedetecteerd worden bij de ED-XRF analyse. Voor de meetbare elementen zoals Cr, Cu, Ni, Pb en Zn worden vergelijkbare concentraties bekomen als met de ICP-AES analysen. Voor de elementen Ba en Sn worden met ED-XRF hogere terugvindingsgraden (± 130%) bekomen in vergelijking met ICP-AES.

	ICP-AES	EDXRF	% rec.	EDXRF	% rec.
		tablet EDXRF tov		poeder	EDXRF tov
	mg/kg ds	mg/kg ds	ICP-AES	mg/kg ds	ICP-AES
As	3,1	-		-	
Ba	67,8	93,5	138	71,4	105
Cd	0,7	-		-	
Со	3,8	48,9	1287	26,8	705
Cr	84,7	79,7	94	65	77
Cu	95369	96630	101	85050	89
Hg	0,2	-		-	
Mn	621,9	575	92	535	86
Мо	4,3	6,7	156	3,5	81
Ni	1730	1787	103	1516	88
Pb	9380	9539	102	8389	89
Sb	20,3	-		-	
Se	2,9	-		-	
Sn	16564,8	21610	130	13540	82
T1	0,9	-		-	
V	5,7	4,4	77	5,9	104
Zn	248,9	271,3	109	200,2	80
Ag	9,1	31,5	346	-	
Sr	174,6	222,5	127	196,7	113
Al	75505	106300	141	86700	115
Ca	54808	55130	101	51750	94
Fe	5055	5457	108	5096	101
Κ	3130	3224	103	2977	95
Р	4864	4766	98	2180	45
S	68041	59930	88	90400	133
Ti	116	208	180	139	120

Tabel 8: Analyseresultaten van ringtestmonster CEN 9/99 (electronic waste)

4.2.7 Besluit resultaten ringtestmonsters

Uit de bekomen resultaten van de ringtestmonsters kan hetvolgende afgeleid worden:

- De monstervoorbehandeling (drogen en malen) is belangrijk om juiste resultaten te bekomen.
- ED-XRF analysen als tablet zijn beter in overeenstemming met de referentiewaarden dan analysen als poeder.
- Voor de elementen Cd, Cu, Mn, Mo, Ni, Pb, Sb, Se, Zn en Sr zijn de resultaten meestal in overeenstemming met de referentiewaarden.
- Voor de elementen Ba, Cr en Sn worden hogere meetwaarden met ED-XRF bekomen in vergelijking met de ICP-AES resultaten. Dit kan waarschijnlijk toegeschreven worden aan de onvolledige destructierendementen bij de ICP-AES analyse.
- Voor het elementen As, V en Hg zijn de resultaten sterk monsterafhankelijk. Veelal liggen bij de ringtestmonsters deze elementen op een lager niveau wat de ED-XRF bemoeilijkt.
- Voor het element Co treedt er steeds een overschatting op bij de ED-XRF analyse in vergelijking met de ICP-AES analyse. Deze afwijking is toe te schrijven aan de

kalibratie, optimalisatie van de ED-XRF kalibratie zal resulteren in juistere waarden.

4.3 Analyse van reële afvalmonsters

Bij de analysen uitgevoerd op de afvalstoffen werden de verschillende genormeerde elementen geëvalueerd. Voor de elementen Hg, Se en Tl zijn er geen of onvoldoende resultaten ter beschikking om een statistische verwerking uit te voeren.

4.3.1 Beschrijving afvalmonsters

Aansluitend aan de voorgaande analysen werden van 49 diverse afvalmonsters vergelijkende analysen uitgevoerd met ICP-AES en ED-XRF. De lijst van geanalyseerde afvalstoffen is weergegeven in Tabel 9. Alle afvalmonsters werden gedroogd bij 105°C overnacht en fijngemalen met de kogelmolen. Van de gehomogeniseerde fijngemalen monsters werd een eerste deelmonster genomen voor het uitvoeren van een zuurdestructie volgens CMA/2/II/A.3, gevolgd door een ICP-AES analyse. Van een tweede deelmonster werd een tablet aangemaakt zoals beschreven in paragraaf 3.2. Dit tablet werd vervolgens geanalyseerd met ED-XRF (procedure: zie paragraaf 3.1.6).

Identificatie	Beschrijving	Identificatie	Beschrijving
20031332	betonsteen met bodemas	20044951	schredder
20032829	bodemas	20044952	filterkoek
20032830	convectieas	20044953	vervuilde grond
20032831	vliegas	20045617	vast afval
20034446	vast afval	20045618	vast afval
20034531	as	20045619	vast afval
20035598	geïmmobiliseerd bodemas	20045620	vast afval
20035600	geïmmobiliseerd bodemas	20045621	vast afval
20035601	geïmmobiliseerd vliegas	20045622	vast afval
20035602	vast afval	20045623	vast afval
20040348	betonpuin (0-40 mm)	20050099	snelbouwsteen
20040926	as	20050100	snelbouwsteen
20043524	metselwerkpuin	20050130	zand/slib
20043525	zeefzand	20050376	as
20043526	asfaltpuin	20050666	as
20043527	mengpuin	20050900	bodemas
20044942	assen	20050901	bodemas
20044943	bodemas	20051312	zuiveringsslib - drinkwater
20044944	bodemas	20051313	zuiveringsslib 3
20044945	bodemas-zand roosteroven	20051314	zuiveringsslib 1 - afvalwater
20044946	vliegas droogtrommeloven	20051315	ruimingsspecie 1 (Gaverbeek)
20044947	straalgrit 1	20051316	ruimingsspecie 2 (Grote Laak)
20044948	straalgrit 2	20051317	ruimingsspecie
20044949	rioolkolkenzand	20051318	bodemverbeterend middel 1
20044950	baggerzand		

Fabel 9:	Lijst van	geanalyseer	de afvalstoffen
----------	-----------	-------------	-----------------

4.3.2 Verwerking van de data

In bijlage 1 zijn per element de gedetailleerde resultaten opgenomen waarbij volgende statistische verwerkingen werden uitgevoerd.

Duplo analysen (bepaling van de intra-reproduceerbaarheid)

Voor de bepaling van de intra-reproduceerbaarheid werden duplo-analysen van de afvalmonsters uitgevoerd op verschillende dagen, en dit zowel met de ICP-AES techniek als met de ED-XRF techniek. Hiervoor werd steeds vertrokken vanuit het oorspronkelijke monster zodat van alle fasen van de analysecyclus de bijdrage aan de totale meetonzekerheid wordt in rekening gebracht. Op basis van deze analyseresultaten kan de meetonzekerheid berekend worden als tweemaal de intra-reproduceerbaarheid variatiecoëfficiënt (U = $2 \times CV_R$).

Regressieanalyse

De metaalconcentraties voor de diverse te toetsen elementen bepaald met ED-XRF, werden vergeleken met de overeenkomstige ICP-AES meetwaarden. De gedetailleerde resultaten zijn weergegeven in bijlage 1. Voor de evaluatie van de data werden volgende lineaire regressieparameters geëvalueerd: helling van de regressie, y-intercept en de regressiecoëfficient R^2 . Een helling van 1 en een y-intercept van 0 duiden aan dat de resultaten van de XRF analysen perfect in overeenstemming zijn met deze van de ICP referentiewaarden. Afwijkingen van deze waarden indiceren dat de XRF resultaten minder accuraat zijn. De regressiecoëfficiënt R^2 is een maat voor de fractie van de totale variantie welke kan toegeschreven worden aan de regressielijn. Een R^2 gelijk aan 1 indiceert dat de lineaire regressie alle variantie verklaart tussen de XRF analysen en de ICP referentie data.

Absoluut en/of relatief verschil tussen de ICP-AES en de ED-XRF meetwaarde t.o.v. de overeenkomstige element concentratie van de ICP-AES analyse.

Om een beeld te verkrijgen van het verschil tussen de ED-XRF en ICP-AES resultaten in functie van het concentratieniveau, wordt dit verschil voor elk element in een figuur weergegeven. Indien van toepassing voor het betreffende element, wordt met een verticale lijn de normwaarde gemarkeerd in de figuur. Afhankelijk van het concentratieniveau wordt ofwel het absolute ofwel het relatieve verschil tussen ED-XRF en ICP-AES uitgezet. Voor de concentraties lager dan 25 mg/kg wordt het absolute verschil uitgezet, voor hogere concentraties wordt het procentuele verschil uitgezet. Voor het element Cr worden enkel de data met een concentratieniveau boven 100 mg/kg verwerkt, voor Co enkel de data boven 25 mg/kg. Tevens werd voor elk element de meetonzekerheid (2 maal CV_R) van de ICP-AES analyse berekend zoals hierboven beschreven en uitgezet in de figuren. Bij de figuren waarbij het absolute verschil wordt uitgezet wordt een vaste grens van +/- 5 mg/kg gehanteerd als meetonzekerheid (20%).

Meetonzekerheid $U_{ICP-AES}$ in relatie met de absolute of relatieve afwijking ICP-AES/ED-XRF Tenslotte wordt de meetonzekerheid van de ICP-AES analyse weergegeven in relatie met het absolute of relatieve verschil tussen de ICP-AES en de ED-XRF resultaten. Daarnaast werd per parameter van de geanalyseerde monsters de mediaanwaarde berekend van het absolute en/of relatieve verschil tussen de ICP-AES en ED-XRF resultaten. Aanvullend werd hiervan het eerste en derde kwartiel weergegeven. Het kwartiel is een maat voor de
spreiding of de variabiliteit van de verdeling. Het eerste kwartiel Q1 komt overeen met het 5^{de} percentiel en is de waarde waarbij kan gesteld worden dat 5% van de verdeling lager is of gelijk is aan deze waarde. Het tweede kwartiel of het 50^{ste} percentiel is de mediaanwaarde. Het derde kwartiel Q3 is het 95% percentiel en is de waarde waarbij kan gesteld worden dat 95% van de verdeling lager is of gelijk is aan deze waarde. Het verschil tussen het derde en eerste kwartiel (Q3-Q1) is de interkwartielafstand en omvat 90% van de dataset.

Per parameter werd de meetonzekerheid van de ICP-AES analyse weergegeven, voor concentraties lager dan 25 mg/kg wordt deze op 5 mg/kg vastgelegd, voor de hogere concentraties werd deze berekend uit de resultaten van de duplo analysen.

Uit deze grafieken kan afgeleid worden of voor de betreffende elementen de interkwartielafstand (Q3-Q1) volledig vervat zit binnen het meetonzekerheidsgebied van de ICP-AES analyse.

4.3.3 Resultaten duplo analysen

In Tabel 10 is voor de verschillende elementen een overzicht gegeven van de intrareproduceerbaarheidvariatiecoëfficiënt (CV_R) berekend uit de duplo analysen voor zowel ICP-AES als ED-XRF. In bijlage 1 zijn voor elk element de individuele meetwaarden weergegeven.

Element	Aantal	% CV _R	% CV _R
_	Monsters	ICP-AES	ED-XRF
As	14	11 %	13 %
Ba	18	5.3 %	4.7 %
Cd	9	6.0 %	5.7 %
Со	11	7.5 %	8.5 %
Cr	22	12 %	12 %
Cu	18	18 %	12 %
Mn	18	3.7 %	3.6 %
Mo	7	16 %	2.3 %
Ni	22	5.8 %	7.5 %
Pb	20	7.1 %	5.5 %
Sb	17	6.7 %	6.4 %
Sn	13	20 %	15 %
V	15	2.5 %	12 %
Zn	21	9.4 %	6.6 %

Tabel 10: Overzicht intra-reproduceerbaarheidvariatiecoëfficiënt (CV_R)

Uit deze resultaten kan afgeleid worden dat voor de verschillende elementen vergelijkbare CV_R worden bekomen voor beide technieken. Enkel voor het element Mo ligt de CV_R bij de ED-XRF analyse lager dan bij deze van de ICP-AES analyse, terwijl bij V dit omgekeerd is. Indien de individuele metingen van deze elementen worden bekeken, blijkt dat voor 1 of 2 afvalmonsters de duplo analysen grotere afwijkingen hebben. Echter zijn deze grotere afwijkingen niet structureel en kan gesteld worden dat voor de beide meettechnieken een vergelijkbare meetspreiding wordt bekomen voor alle getoetste elementen.

4.3.4 Regressieanalyse

De individuele resultaten van de vergelijkende analysen zijn per element opgenomen in bijlage 1.

Voor de evaluatie van de data werden volgende lineaire regressieparameters geëvalueerd: helling van de regressie, y-intercept en de regressiecoëfficient R^2 . Een helling van 1 en een y-intercept van 0 duiden aan dat de resultaten van de XRF analysen perfect in overeenstemming zijn met deze van de ICP referentiewaarden. De regressiecoëfficiënt R^2 is een maat voor de fractie van de totale variantie welke kan toegeschreven worden aan de regressielijn. Een R^2 gelijk aan 1 indiceert dat de lineaire regressie alle variantie verklaart tussen de XRF analysen en de ICP referentie data. De bekomen resultaten zijn weergegeven in Tabel 11, Figuur 18 en Figuur 19.

Element	Regressie	\mathbb{R}^2
As	y = 1.0364x - 1.2933	0.9709
Ba	y = 1.0146x - 1.0950	0.9981
Cd	y = 0.9494x + 1.4282	0.9774
Co	y = 0.6573x + 6.8976	0.8635
Cr	y = 0.8280x + 3.6375	0.8783
Cu	y = 0.9717x + 1.1128	0.9851
Mn	y = 0.9472x + 1.3568	0.9860
Mo	y = 0.9543x + 1.3017	0.9984
Ni	y = 1.0077x - 1.1280	0.9829
Pb	y = 0.9849x - 1.0000	0.9881
Sb	y = 1.0929x - 1.6604	0.9559
Sn	y = 0.9794x + 1.4521	0.9767
V	y = 1.1023x - 1.8323	0.9123
Zn	y = 0.9996x - 1.1711	0.9924

Tabel 11: Regressiecoëfficiënten van de vergelijkende ED-XRF/ICP-AES analysen

Voor de elementen As, Ba, Cd, Cu, Mn, Mo, Ni, Pb, Sn en Zn worden gelijkwaardige resultaten bekomen voor de ICP-AES en de ED-XRF analysen, met hellingen gelegen tussen 0.95 en 1.05, en regressiecoëfficiënten hoger dan 0.97.

Voor de elementen Sb en V ligt de helling rond 1.10 en de R^2 bedragen resp. 0.96 en 0.91. Dit wijst op een grotere maat van variantie tussen de ICP-AES en ED-XRF analysen.

Voor het element Cr wordt, zoals verwacht, een hogere meetwaarde bekomen bij de ED-XRF analyse. Bij de ED-XRF analyse worden immers steeds 'totaal' gehalten bepaald. Gezien er voorafgaandelijk aan de analyse geen destructie wordt uitgevoerd, in tegenstelling met de ICP-AES metingen, zullen er ook geen destructieverliezen kunnen optreden.

Voor het element Co worden eveneens hogere afwijkingen bekomen wat mogelijk kan toegeschreven worden aan een slechte kalibratie. Voor dit element dient de kalibratie geoptimaliseerd te worden.

Figuur 18: Vergelijkende analyseresultaten ICP-AES/ED-XRF

Figuur 19: Vergelijkende analyseresultaten ICP-AES/ED-XRF

4.3.5 Absoluut en/of relatief verschil tussen de ICP-AES en de ED-XRF meetwaarde t.o.v. de element concentratie

Om een beeld te verkrijgen van het verschil tussen de ED-XRF en ICP-AES resultaten in functie van het concentratieniveau, wordt dit verschil voor elk element in Figuur 20 t.e.m. Figuur 23 weergegeven. Indien van toepassing voor het betreffende element, wordt met een verticale lijn de normwaarde gemarkeerd in de figuur. Afhankelijk van het concentratieniveau wordt ofwel het absolute ofwel het relatieve verschil tussen ED-XRF en ICP-AES uitgezet. Voor de concentraties lager dan 25 mg/kg wordt het absolute verschil uitgezet, voor hogere concentraties wordt het procentuele verschil uitgezet. Voor het element Cr worden enkel de data met een concentratieniveau boven 100 mg/kg verwerkt, voor Co enkel de data boven 25 mg/kg. Tevens werd voor elk element de meetonzekerheid (2 maal CV_R) van de ICP-AES analyse berekend op basis van duplo analysen van afvalstoffen en uitgezet in de figuren. Bij de figuren waarbij het absolute verschil wordt weergegeven, wordt een vaste grens van +/- 5 mg/kg gehanteerd als meetonzekerheid (20%).

Figuur 20: Weergave van het absolute (rechts) en/of relatieve (links) verschil tussen de ICP-AES en de ED-XRF meetwaarde t.o.v. de overeenkomstige element concentratie

Figuur 21: Weergave van het absolute (rechts) en/of relatieve (links) verschil tussen de ICP-AES en de ED-XRF meetwaarde t.o.v. de overeenkomstige element concentratie

Figuur 22: Weergave van het absolute (rechts) en/of relatieve (links) verschil tussen de ICP-AES en de ED-XRF meetwaarde t.o.v. de overeenkomstige element concentratie

De horizontale groene lijnen duiden de meetonzekerheid aan van de ICP-AES analysen.

Figuur 23: Weergave van het absolute (rechts) en/of relatieve (links) verschil tussen de ICP-AES en de ED-XRF meetwaarde t.o.v. de overeenkomstige element concentratie

Voor de elementen As, Ba Cd, Cu, Mn, Mo en Sb kan uit de figuren afgeleid worden dat de afwijkingen tussen de ICP-AES en ED-XRF meetwaarde aanvaardbaar zijn en grotendeels binnen de grenzen van de meetonzekerheid van de ICP-AES analyse ligt.

Voor de elementen Ni, Pb en Zn kunnen afwijkingen tot 40 % bekomen worden zowel in positieve als in negatieve richting. Afwijkingen van een bepaald element bij een welbepaald monster leiden niet noodzakelijk tot een grote afwijking van de andere elementen bij dit monster. Meetspreidingen op de duplo analysen van afvalmonsters zijn voor de beide analysetechnieken vergelijkbaar.

Voor de elementen Co, Cr en Sn zijn de afwijkingen tussen de ICP-AES en ED-XRF meetwaarde op regelmatige basis hoger dan de meetonzekerheid van de ICP-AES analyse, en dit in positieve richting. Voor Cr en Sn kan dit toegeschreven worden aan een onvolledige destructie bij de ICP-AES analyse. Bij ED-XRF wordt immers rechtstreeks op het monster gemeten en zal bijgevolg steeds een 'totaalgehalte' bepaald worden. Voor het element Co dient de kalibratie van de ED-XRF meting geoptimaliseerd te worden. De grotere afwijkingen voor de elementen Co, Cr en Sn werden eveneens waargenomen bij de analyse van referentieringtestmonsters (zie paragraaf 4.2).

Voor het element V worden afwijkingen tot 60% waargenomen tussen de ICP-AES en ED-XRF meetwaarde bij concentraties lager dan 100 mg/kg. Bij duplo analysen van afvalmonsters wordt ook een hogere, maar aanvaardbare, meetspreiding waargenomen bij de ED-XRF analysen in vergelijking met de ICP-AES analysen.

4.3.6 Meetonzekerheid U_{ICP-AES} in relatie met de absolute of relatieve afwijking ICP-AES/ED-XRF

Aansluitend op voorgaande figuren wordt voor de diverse elementen een overzicht gegeven van de meetonzekerheid van de ICP-AES analyse weergegeven in relatie met het absolute of relatieve verschil tussen de ICP-AES en de ED-XRF resultaten. Daarnaast werd per parameter van de geanalyseerde monsters de mediaanwaarde berekend van het absolute en/of relatieve verschil tussen de ICP-AES en ED-XRF resultaten. Aanvullend werd hiervan het 5^{de} (5P) en 95^e (95P) percentiel weergegeven. Het 5de percentiel is een waarde zodanig dat 5% van de waarnemingen lager zijn dan deze waarde en 95% hoger. Het 95^e percentiel is een waarde zodanig dat 95% van de waarnemingen lager zijn dan deze waarde en 95% hoger. Het 95^e percentiel is een soer en soer de spreiding of de variabiliteit van de verdeling. Het verschil tussen het 5^{de} en 95^e percentiel omvat 90% van de dataset. De individuele meetwaarden worden weergegeven in bijlage 1.

Figuur 24: Relatieve afwijking tussen ICP-AES/ED-XRF [mediaan waarde (=marker, 50P)) - 5P -95P] in relatie met meetonzekerheid U_{ICP-AES}

Per parameter werd de meetonzekerheid van de ICP-AES analyse weergegeven, voor concentraties lager dan 25 mg/kg wordt deze op 5 mg/kg vastgelegd, voor de hogere concentraties werd deze berekend uit de resultaten van de duplo analysen.

Uit deze grafieken kan afgeleid worden of voor de betreffende elementen 90% van de dataset (i.e. het absolute en/of relatieve verschil tussen de ICP-AES en ED-XRF resultaten) volledig vervat zit binnen het meetonzekerheidsgebied van de ICP-AES analyse.

Figuur 25: Relatieve afwijking tussen ICP-AES/ED-XRF [mediaan waarde (=marker, 50P)) - 5P -95P] in relatie met meetonzekerheid U_{ICP-AES}

Uit Figuur 24 en Figuur 25 kan afgeleid worden dat voor de elementen As, Ba, Cd, Cu, Mn, Mo en Sb het gebied tussen 95P en 5P vervat zit binnen het meetonzekerheidsgebied van de ICP-AES analyse d.w.z. dat 90% van de dataset (=afwijkingen) vervat zit binnen het meetonzekerheidsgebied van de ICP-AES analyse. Voor het elementen Ni, Pb, Zn, Co, Cr, Sn en V valt het gebied tussen 95P en 5P deels buiten het meetonzekerheidsgebied van de ICP-AES analyse. Voor de elementen Co, Cr en Sn zijn deze significant, voor Cr en Sn kan dit worden toegeschreven aan de methodiek (destructie t.o.v. rechtstreekse meting), voor Co dient de ED-XRF kalibratie aangepast te worden.

Figuur 26: Absolute afwijking tussen ICP-AES/ED-XRF [mediaan waarde (=marker, 50P)) - 5P -95P] in relatie met meetonzekerheid U_{ICP-AES}

Bij het bepalen van lage gehalten aan verontreinigingen wordt voornamelijk voor het element Sn hoge afwijkingen genoteerd van de ED-XRF meetwaarde t.o.v. de ICP-AES meetwaarde (zie Figuur 26).

4.4 Besluit

Uit de bekomen resultaten van de vergelijkende analysen van referentiemonsters, interlaboratorium ringtestmonsters en reële afvalmonsters kan afgeleid worden dat ED-XRF kan ingezet worden voor het kwantificeren van metaalconcentraties. Niettegenstaande dienen enkele randbemerkingen geformuleerd te worden:

- De monstervoorbehandeling speelt een cruciale rol in de uiteindelijke juistheid van het analyseresultaat. Voor het bekomen van juiste en reproduceerbare resultaten van elementconcentraties moet het monster worden gedroogd, fijngemalen en geanalyseerd te worden als tablet.
- Afhankelijk van monstertype kunnen er afwijkingen optreden tussen vergelijkende analysen (ICP-AES t.o.v. ED-XRF). Afhankelijk van element is dit ad random (bv.

Cu, Pb,...) of eerder systematisch (bv. Cr, Sn). Bij deze laatste elementen is dit toe te schrijven aan het feit dat bij ED-XRF analysen rechtstreeks op het monster wordt gemeten en er dus geen verliezen optreden door een voorafgaandelijke destructie.

- Bij toetsing van normwaarden is het belangrijk om de mogelijke fout op het ED-XRF analyseresultaat in rekening te brengen om een al dan niet overschrijding van de norm vast te stellen.
- Voor de elementen Hg, Tl en Se zijn er te weinig vergelijkende analyseresultaten boven de detectielimiet ter beschikking om een uitgebreide validatie uit te voeren. Op basis van de vergelijkende analysen van referentiemonsters en de interlaboratorium ringtestmonsters mag aangenomen worden dat deze elementen eveneens met ED-XRF juist en reproduceerbaar kunnen gemeten worden.
- Met de ED-XRF techniek is het niet mogelijk om Be te bepalen in de monsters.

5 BESLUIT

Zn

Op basis van het uitgevoerde onderzoek kan gesteld worden dat ED-XRF analysen een meerwaarde bieden voor de karakterisatie van afvalstoffen in het kader van Vlarea. De techniek is in staat om op een snelle en niet-destructieve manier analysen uit te voeren. De juistheid en de reproduceerbaarheid van het analyseresultaat hangen in grote mate af van de uitgevoerde monstervoorbehandeling. Indien enkel een screening van het monster dient uitgevoerd te worden, kan de voorbereiding beperkt blijven tot drogen en verfijnen van het monster, voor kwantitatieve metingen is het noodzakelijk om het monster te drogen, te verfijnen en een tablet aan te maken.

Niettegenstaande de ED-XRF analysen grotendeels resulteren in vergelijkbare resultaten met de ICP-AES analysen, zijn er afwijkingen mogelijk, afhankelijk van het monstertype en element. Afwijkende resultaten voor oa. de elementen Cr en Sn kunnen worden toegeschreven aan het feit dat bij ED-XRF analysen rechtstreeks op het monster wordt gemeten en er dus geen onvolledige destructierendementen worden bekomen (zoals van toepassing bij ICP-AES analysen). Bovendien wordt opgemerkt dat heterogeniteiten in monsters beter worden ondervangen bij ED-XRF analysen dan bij ICP-AES analysen. Bij ICP-AES analysen wordt slechts 0.5 g in bewerking genomen, terwijl bij ED-XRF analysen ongeveer 10 g wordt genomen. Vermits ED-XRF een oppervlaktetechniek is speelt de korrelgrootte van het monster een belangrijke rol. Bij oa. bouwstoffen kunnen omwille van de groffere structuur verschillen bekomen worden tussen ED-XRF en ICP-AES resultaten. Deze kunnen ondervangen worden door de monsters voldoende fijn te malen.

Een validatie van diverse monstertypes in het laboratorium is bijgevolg gewenst om een beeld te verkrijgen van de verwachte juistheid van de analyse.

Momenteel is op Europees niveau in CEN/TC292/WG3 (Waste) een normmethode in ontwikkeling betreffende *Characterisation of waste and soil – Determination of elemental composition by X-ray fluorescence*. In deze normmethode is een methodiek beschreven om op een kwantitatieve manier bodem, bodemachtige materialen en homogeen vast afval te analyseren met X-stralen fluorescentie spectrometrie. Daarnaast is ook een (semi)-kwantitatieve screeningsmethode opgenomen om diverse afvalstoffen te karakteriseren waarbij aanbevelingen worden geformuleerd van de verschillende toe te passen monstervoorbehandelingen.

Element	Meststof/Bodemverb.middel	Bouwstof
	Norm (mg/kg ds)	Norm (mg/kg ds)
As	150	250
Cd	6	10
Cr	250	1250
Cu	375	375
Hg	5	5
Pb	300	1250
Ni	50	250

Bij **parameterpakket 3.1 (secundaire grondstoffen)** liggen de normwaarden (richtwaarden) afhankelijk van bestemming als volgt:

1250

900

Op deze concentratieniveau's leveren de ED-XRF analysen voor de betrokken elementen betrouwbare resultaten op. Niettegenstaande worden de grootste afwijkingen tussen ICP-AES en ED-XRF analysen bekomen bij bouwstoffen omwille van de heterogeniteit en groffere structuur van dit type monsters. Een degelijke homogenisatie (ook noodzakelijk voor ICP-AES analysen) en verfijning van de monsters is noodzakelijk om de heterogeniteit te ondervangen. Bovendien zijn deze totaalconcentraties aan metalen, voor gebruik in of als bouwstoffen, richtwaarden. Gezien het concentratieniveau van de te toetsen elementen is het noodzakelijk om voor deze analysen de High Performance ED-XRF techniek in te zetten, en niet de draagbare (al dan niet in labo gepositioneerde) ED-XRF meetsystemen.

De parameters opgenomen in **parameterpakket 4.3** (gevaarlijke afvalstoffen) worden enrzijds aangewend voor toetsing aan normering 'gevaarlijke afvalstof' en anderzijds voor de basiskarakterisatie van afvalstoffen op stortplaatsen.

Element	Norm (mg/kg ds)
As	1000
Tl	100
Hg	100
Cd	1000
Be	250

Voor toetsing aan normering 'gevaarlijke afvalstof' zijn volgende normwaarden relevant:

Bovenstaande elementen en normwaarden dienen in de afvalstof getoetst te worden om al dan niet te definiëren of deze afvalstof als 'gevaarlijk' kan beschouwd te worden. De te toetsen normwaarden voor de betrokken contaminanten liggen vrij hoog en bijgevolg zijn ED-XRF analysen voor dit type monster toepasbaar. Echter het element Be kan niet met ED-XRF gemeten worden omdat dit element buiten het meetbereik van het ED-XRF meetsysteem valt (Na – U).

Anderzijds dienen de totaalconcentraties van de metalen As, Cd, Hg, Ba, Pb, Cr, Cu, Ni, Zn, Mo, Sb en Se in afvalstoffen bepaald te worden in het kader van de basiskarakterisatie van afvalstoffen op stortplaatsen. In dit kader zijn geen normwaarden ter beschikking en zijn de meetwaarden indicatief. Omdat de beschreven elementen met voldoende betrouwbaarheid kunnen gemeten worden, kan de ED-XRF techniek ingezet worden voor de karakterisatie van afvalstoffen. Omwille van de snelheid van de ED-XRF techniek (lagere kostprijs) is het mogelijk om meerdere analysen per monstertype uit te voeren zodat een beter beeld verkregen wordt van de basiskarakterisatie van de afvalstof.

De monstervoorbehandeling (drogen en fijnmalen) blijft belangrijk om representatieve resultaten te bekomen. Als meetsysteem kan voor beide toepassingskaders naast de High Performance ED-XRF systemen ook bench top systemen ingezet worden.

Bij **parameterpakket 9** (**specifieke verbrandingsparameters**) zijn de metaalconcentraties specifiek gericht naar de controle van de input voor verbranding met het oog op de bedrijfsvoering en de uiteindelijk meetwaarden van de emissieparameters. Het betreft de parameters Cd, Tl, Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V en Sn, waarvan geen normwaarden op de aangevoerde afvalstoffen gedefinieerd zijn.

Vooral de snelheid en het niet-destructief karakter van de ED-XRF analysen laten toe om snel een beeld te vormen van het type afvalstof (en de contaminant concentraties) dat geleverd wordt voor verbranding. Indien zeer snel en indicatief een idee van de samenstelling van de afvalstof dient bekomen te worden, kunnen draagbare ED-XRF meetsystemen ingezet worden. De bekomen waarden hebben een kwalitatief karakter omdat er geen monstervoorbehandeling werd uitgevoerd. Voor het bekomen van juistere waarden dienen de afvalmonsters in het laboratorium gedroogd en fijngemalen te worden. Deze monster kunnen dan vervolgens met de diverse ED-XRF systemen gemeten worden. Voor het bekomen van kwantitatieve meetresultaten moeten de High Performance of bench top systemen worden ingezet, voor het bekomen van semi-kwantitieve gegevens kan het draagbare meetsysteem, gepositioneerd in het laboratorium aangewend worden. Bij deze laatste liggen de bekomen aantoonbaarheidsgrenzen wel hoger (50 – 100 mg/kg tegenover 5 – 10 mg/kg bij High Performance ED-XRF, waarden zijn elementafhankelijk).

6 REFERENTIES

¹ C. Vanhoof, B. Noten en K. Tirez, *Inzetbaarheid van ED-XRF bij bodemanalysen*, VITO rapport 2004/MIM/R/30.

² C. Vanhoof, V. Corthouts and K. Tirez, *Energy-dispersive X-ray fluorescence systems as analytical tool for assessment of contaminated soils*, J. Environ. Monit., 2004, 6, 344-350.

³ V. Thomsen and D. Schatzlein, Advances in Field-portable XRF, Spectroscopy 17(7), 2002.

⁴ X. Hou, Y. He and B.T. Jones, *Recent advances in portable X-Ray Fluorescnce Spectrometry*, Applied Spectroscopy reviews, 2004, vol 39, No 1, 1-25.

⁵ M.S. Reddy, S. Basha, H.V. Joshi and B. Jha, *Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion*, J. of Hazardous Materials, B123, 2005, 242-249.

⁶ D. Robertson, R.S. Barratt, S.J. Burnley, P. Webb and J.S. Watson, *The analysis of flue gas treatment residues using non-destructive X-ray fluorescence as regulatory compliance test*, J. Environ. Monit., 2005, 7, 416-418.

⁷ T. Ernst, R. Popp, R. van Eldik, *Quantification of heavy metals for the recycling of waste plastics from electrotechnical applications*, Talanta ,53, 2000, 347-357.

⁸ C. Vanhoof, V. Corthouts, K. Tirez en N. De Brucker, *Toepassingsmogelijkheden van ED-XRF als veldanalystechniek voor screening en vingerafdruk analyse*, VITO rapport 2001/MIM/R/5.

⁹ C. Vanhoof, B. Noten, V. Corthouts en K. Tirez, *ED-XRF als kwantitatieve analysetechniek voor de bepaling van metalen in bodems*, VITO rapport 2002/MIM/R/118.

¹⁰ Documentation Spectro X-LAB 2000, Manual version 04/2000.

¹¹ EN 13656:2002 Characterization of waste – Microwave assisted digestion with hydrofluoric (HF), nitric (HNO₃) and hydrochloric (HCl) acid mixture for subsequent determination of elements in waste.

Bijlage 1

Vergelijkende analyseresultaten: Arseen

Identificatie	Beschrijving	ICP-AES	ICP-AES	(X _{i,1} -X _{i,2})/	ED-XRF	ED-XRF	(X _{i,1} -X _{i,2})/
		1	2	Xgem	1	2	Xgem
		mg/kg ds	mg/kg ds		mg/kg ds	mg/kg ds	
20044944-1	bodemas	13	14	-0,07	21	18	0,15
20044949-1	rioolkolkenzand	13	12	0,08	12	9	0,30
20044952-1	filterkoek	13	14	-0,07	17	14	0,16
20051313-1	zuiveringsslib	13	10	0,26	9	7	0,25
20043525-1	zeefzand	14	14	0,00	11	12	-0,09
20044947-1	straalgrit	16	18	-0,12	13	12	0,04
20051314-1	zuiveringsslib	16	13	0,21	13	15	-0,13
20043524-1	metselwerkpuin	17	13	0,27	13	10	0,26
20044945-1	bodemas-zand	21	21	0,00	39	37	0,05
20044951-1	schredder	25	28	-0,11	57	37	0,43
20044942-1	assen	65	76	-0,16	55	56	-0,01
20051315-1	ruimingsspecie	146	113	0,25	122	115	0,05
20044946-1	vliegas	627	654	-0,04	549	590	-0,07
20051316-1	ruimingsspecie	643	586	0,09	675	663	0,02
			$\% \text{CV}_{\text{R}}$	10,8		$\% \text{CV}_{\text{R}}$	13,2

Veroeliikende av	nalvsen en	verschilherekening	ED-XRE to v	ICP-AES
vergenjkende di	all ysen en	verschuberekening	LD- ART 1.0.V.	ICI -ALS

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
	, ,	mg/kg ds	mg/kg ds	mg/kg ds	%
20051313-2	zuiveringsslib	10	7	-3	
20044948-2	straalgrit	11	5	-6	
20045619	vast afval	11	8	-3	
20031332	betonsteen	12	8	-4	
20044949-2	rioolkolkenzand	12	9	-3	
20043524-2	metselwerkpuin	13	10	-3	
20044944-1	bodemas	13	21	8	
20044949-1	rioolkolkenzand	13	12	-1	
20044952-1	filterkoek	13	17	4	
20051313-1	zuiveringsslib	13	9	-4	
20051314-2	zuiveringsslib	13	15	2	
20032831	vliegas	14	12	-2	
20043525-1	zeefzand	14	11	-3	
20043525-2	zeefzand	14	12	-2	
20044944-2	bodemas	14	18	4	
20044952-2	filterkoek	14	14	0	
20050900	bodemas	14	12	-2	
20044947-1	straalgrit	16	13	-4	
20051314-1	zuiveringsslib	16	13	-3	
20043524-1	metselwerkpuin	17	13	-4	
20044947-2	straalgrit	18	12	-6	
20044951-2	schredder	28	37		32%
20044942-1	assen	65	55		-15%
20044942-2	assen	76	56		-27%
20051315-2	ruimingsspecie	113	115		2%

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20051315-1	ruimingsspecie	146	122		-17%
20051316-2	ruimingsspecie	586	663		13%
20044946-1	vliegas	627	549		-12%
20051316-1	ruimingsspecie	643	675		5%
20044946-2	vliegas	654	590		-10%
			mediaan	-2,8	-9,8%
			5P	-6,2	-23%
			95P	3,5	25%

Vergelijkende analyseresultaten: barium

Identificatie	Beschrijving	ICP-AES	ICP-AES	(X _{i,1} -X _{i,2})/	ED-XRF	ED-XRF	(X _{i,1} -X _{i,2})/
		1	2	Xgem	1	2	Xgem
		mg/kg ds	mg/kg ds		mg/kg ds	mg/kg ds	
20044952-1	filterkoek	10	10	-0,02	10	8,1	0,24
20051312-1	zuiveringsslib	65	67	-0,03	58	59	-0,02
20044949-1	rioolkolkenzand	246	255	-0,04	267	274	-0,02
20044953-1	vervuilde grond	265	287	-0,08	269	290	-0,08
20044950-1	baggerzand	282	292	-0,03	311	306	0,02
20051314-1	zuiveringsslib	395	381	0,04	336	342	-0,02
20051313-1	zuiveringsslib	398	402	-0,01	400	383	0,05
20051315-1	ruimingsspecie	400	397	0,01	386	397	-0,03
20051317-1	ruimingsspecie	411	445	-0,08	418	419	0,00
20051316-1	ruimingsspecie	470	390	0,19	413	397	0,04
20044943-1	bodemas	1110	1130	-0,02	1171	1107	0,06
20051318-1	bodemverbet. middel	1240	1350	-0,08	1380	1328	0,04
20044947-1	straalgrit	1570	1460	0,07	1594	1551	0,03
20044948-1	straalgrit	1640	1390	0,17	1682	1596	0,05
20044944-1	bodemas	1860	2000	-0,07	1945	1990	-0,02
20044945-1	bodemas-zand	2020	2100	-0,04	2113	2130	-0,01
20044951-1	schredder	4700	4510	0,04	4759	4919	-0,03
20044942-1	as	5610	5470	0,03	5700	5660	0,01
			% CV _R	5,3		% CV _R	4,7

Vergeliikende	analvsen er	verschilberekening	ED-XRF t.o.v.	ICP-AES
, er genijkende	chickey bert et	versenneer enerning	LD 1111 1.0.1.	ICI IILD

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20045623	vast afval	5,9	6,3	0	
20044952-1	filterkoek	9,8	10	1	
20044952-2	filterkoek	10	8,1	-2	
20045622	vast afval	20	19	-1	
20051312-1	zuiveringsslib	65	58	-7	-11%
20051312-2	zuiveringsslib	67	59	-8	-12%
20040348	betonpuin	170	178	8	5%
20043525-1	zeefzand	189	198	9	5%
20044949-1	rioolkolkenzand	246	267	21	9%
20044949-2	rioolkolkenzand	255	274	19	7%
20044953-1	vervuilde grond	265	269	4	1%
20044950-1	baggerzand	282	311	29	10%
20044953-2	vervuilde grond	287	290	3	1%
20044950-2	baggerzand	292	306	14	5%
20045620	vast afval	363	320	-43	-12%
20051314-2	zuiveringsslib	381	342	-39	-10%
20051316-2	ruimingsspecie	390	397	7	2%
20051314-1	zuiveringsslib	395	336	-59	-15%
20051315-2	ruimingsspecie	397	397	0	0%
20051313-1	zuiveringsslib	398	400	2	1%

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20051315-1	ruimingsspecie	400	386	-14	-4%
20045619	vast afval	401	387	-14	-3%
20051313-2	zuiveringsslib	402	383	-20	-5%
20051317-1	ruimingsspecie	411	418	7	2%
20051317-2	ruimingsspecie	445	419	-26	-6%
20051316-1	ruimingsspecie	470	413	-57	-12%
20044943-1	bodemas	1110	1171	61	5%
20044943-2	bodemas	1130	1107	-23	-2%
20050900	bodemas	1220	1176	-44	-4%
20051318-1	bodemverbet. middel	1240	1380	140	11%
20051318-2	bodemverbet. middel	1350	1328	-22	-2%
20044948-2	straalgrit	1390	1596	206	15%
20044947-2	straalgrit	1460	1551	91	6%
20044947-1	straalgrit	1570	1594	24	2%
20044948-1	straalgrit	1640	1682	42	3%
20044944-1	bodemas	1860	1945	85	5%
20044944-2	bodemas	2000	1990	-10	-1%
20044945-1	bodemas-zand	2020	2113	93	5%
20044945-2	bodemas-zand	2100	2130	30	1%
20044951-2	schredder	4510	4919	409	9%
20044951-1	schredder	4700	4759	59	1%
20044942-2	as	5470	5660	190	3%
20044942-1	as	5610	5700	90	2%
				mediaan	1,4%
				5P	-12%
				95P	10%

Vergelijkende analyseresultaten: cadmium

Identificatie	Beschrijving	ICP-AES	ICP-AES	(X _{i,1} -X _{i,2})/	ED-XRF	ED-XRF	(X _{i,1} -X _{i,2})/
		1	2	Xgem	1	2	Xgem
		mg/kg ds	mg/kg ds		mg/kg ds	mg/kg ds	
20051317-1	ruimingsspecie	3,1	3,0	0,03	3,8	4,0	-0,05
20051314-1	zuiveringsslib	4,9	4,4	0,11	4,6	5,0	-0,08
20044945-1	bodemas-zand	6,6	5,9	0,11	7,9	7,0	0,12
20051316-1	ruimingsspecie	9,0	8,1	0,11	11	11	-0,02
20044942-1	as	9,5	8,6	0,10	19	16	0,16
20044944-1	bodemas	12	12	0,00	17	16	0,07
20051315-1	ruimingsspecie	18	16	0,12	19	18	0,03
20044951-1	schredder	70	75	-0,07	70	66	0,05
20044946-1	vliegas	334	335	0,00	389	379	0,02
			$\% \text{CV}_{\text{R}}$	6,0		$\% \text{CV}_{\text{R}}$	5,7

Vergelijkende analysen en verschilberekening ED-XRF t.o.v. ICP-AES

					Rei.
Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20051317-2	ruimingsspecie	3,0	4,0	1	
20051317-1	ruimingsspecie	3,1	3,8	1	
20051314-2	zuiveringsslib	4,4	4,7	0	
20051314-1	zuiveringsslib	4,9	4,6	0	
20044945-2	bodemas-zand	5,9	7,2	1	
20032831	vliegas	6,2	9,9	4	
20032830	convectieas	6,6	8,9	2	
20044945-1	bodemas-zand	6,6	7,9	1	
20051316-2	ruimingsspecie	8,1	11	3	
20044943-1	bodemas	8,5	13	4	
20044942-2	as	8,6	16	8	
20051316-1	ruimingsspecie	9,0	11	2	
20044942-1	as	9,5	19	9	
20044944-1	bodemas	12	17	5	
20044944-2	bodemas	12	16	4	
20051315-2	ruimingsspecie	16	18	2	
20051315-1	ruimingsspecie	18	19	1	
20044951-1	schredder	70	70		-1%
20044951-2	schredder	75	66		-11%
20044946-1	vliegas	334	389		16%
20044946-2	vliegas	335	379		13%
			mediaan	2,2	6,3%
			5P	0,18	-9,9%
			95P	8,1	16%

Vergelijkende analyseresultaten: kobalt

Identificatie	Beschrijving	ICP-AES	ICP-AES	(X _{i,1} -X _{i,2})/	ED-XRF	ED-XRF	(X _{i,1} -X _{i,2})/
		1	2	Xgem	1	2	Xgem
		mg/kg ds	mg/kg ds		mg/kg ds	mg/kg ds	
20051317-1	ruimingsspecie	11	11	0,00	24	21	0,16
20044943-1	bodemas	15	16	-0,06	81	85	-0,05
20044942-1	as	17	18	-0,06	28	34	-0,17
20051314-1	zuiveringsslib	20	15	0,29	40	36	0,10
20044944-1	bodemas	24	23	0,04	73	72	0,01
20044948-1	straalgrit	48	47	0,02	87	81	0,07
20044947-1	straalgrit	59	61	-0,03	92	118	-0,25
20044951-1	schredder	83	96	-0,15	154	161	-0,04
20044952-1	filterkoek	182	188	-0,03	273	244	0,11
20044946-1	vliegas	207	213	-0,03	214	214	0,00
20051313-1	zuiveringsslib	499	453	0,10	351	381	-0,08
			% CV _R	7,5		% CV _R	8,5

Duplo analysen

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20051317-1	ruimingsspecie	11	24	13	
20051317-2	ruimingsspecie	11	21	10	
20044943-1	bodemas	15	81	66	
20051314-2	zuiveringsslib	15	36	21	
20044943-2	bodemas	16	85	69	
20044942-1	as	17	28	11	
20044942-2	as	18	34	16	
20051314-1	zuiveringsslib	20	40	20	
20044944-2	bodemas	23	72	49	
20044944-1	bodemas	24	73	49	
20044948-2	straalgrit	47	81	34	72%
20044948-1	straalgrit	48	87	39	81%
20044947-1	straalgrit	59	92	33	56%
20044947-2	straalgrit	61	118	57	94%
20044951-1	schredder	83	154	71	86%
20044951-2	schredder	96	161	65	68%
20044945-1	bodemas-zand	139	115	-24	-17%
20044952-1	filterkoek	182	273	91	50%
20044952-2	filterkoek	188	244	56	30%
20044946-1	vliegas	207	214	7	3%
20044946-2	vliegas	213	214	1	0%
20051313-2	zuiveringsslib	453	381	-72	-16%
20051313-1	zuiveringsslib	499	351	-148	-30%
				mediaan	50%
				5P	-22%
				95P	89%

Vergelijkende analyseresultaten: chroom

Identificatie	Beschrijving	ICP-AES	ICP-AES	(X _{i,1} -X _{i,2})/	ED-XRF	ED-XRF	(X _{i,1} -X _{i,2})/
		1	2	Xgem	1	2	Xgem
		mg/kg ds	mg/kg ds		mg/kg ds	mg/kg ds	
20051312-1	zuiveringsslib	4,3	6,0	-0,33	11	14	-0,26
20043527-1	mengpuin	46	40	0,14	65	54	0,19
20043526-1	asfaltpuin	47	37	0,24	102	60	0,52
20051316-1	ruimingsspecie	50	47	0,06	66	56	0,16
20051318-1	bodemverbet. middel	50	61	-0,20	76	86	-0,12
20044949-1	rioolkolkenzand	51	82	-0,47	76	86	-0,12
20044953-1	vervuilde grond	55	44	0,22	67	63	0,06
20051314-1	zuiveringsslib	57	53	0,07	52	55	-0,06
20043524-1	metselwerkpuin	66	67	-0,02	89	76	0,16
20044950-1	baggerzand	83	81	0,02	111	116	-0,05
20051313-1	zuiveringsslib	83	75	0,10	161	126	0,24
20051317-1	ruimingsspecie	94	103	-0,09	103	110	-0,06
20051315-1	ruimingsspecie	138	128	0,08	141	140	0,00
20044947-1	straalgrit	254	257	-0,01	299	269	0,10
20044943-1	bodemas	263	262	0,00	335	355	-0,06
20044944-1	bodemas	305	380	-0,22	493	459	0,07
20044948-1	straalgrit	305	294	0,04	315	285	0,10
20044946-1	vliegas	324	320	0,01	381	349	0,09
20044951-1	schredder	524	589	-0,12	535	465	0,14
20044945-1	bodemas-zand	708	643	0,10	441	490	-0,11
20044942-1	as	1060	1050	0,01	1058	979	0,08
20044952-1	filterkoek	19500	19300	0,01	20190	19460	0,04
			% CV _R	11,7		% CV _R	11,7

Duplo analysen

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20051312-2	zuiveringsslib	6,1	14,3	8	
20034446	vast afval	8,1	50	42	
20045622	vast afval	11	11	-1	
20050130	zand/slib	26	165	139	
20035598	bodemas	27	370	343	
20035601	vliegas	28	68	40	
20035600	bodemas	32	171	139	
20043526-2	asfaltpuin	37	60	23	
20043525-1	zeefzand	38	49	11	
20040348	betonpuin (0-40 mm)	39	151	112	
20043527-2	mengpuin	40	54	14	
20044953-2	vervuilde grond	44	63	19	
20043527-1	mengpuin	46	65	19	
20043526-1	asfaltpuin	47	102	55	
20051316-2	ruimingsspecie	47	56	9	
20045621	vast afval	49	99	50	

	Rel. verschil
mg/kg ds mg/kg ds mg/kg ds	%
20051316-1 ruimingsspecie 50 66 16	
20051318-1 bodemverbet. middel 50 76 26	
20044949-1 rioolkolkenzand 51 76 25	
20051314-2 zuiveringsslib 53 55 2	
20045617 vast afval 55 148 93	
20045619 vast afval 55 171 116	
20044953-1 vervuilde grond 55 67 12	
20051314-1 zuiveringsslib 57 52 -5	
20045618 vast afval 59 70 11	
20051318-2 bodemverbet. middel 61 86 25	
20043524-1 metselwerkpuin 66 89 23	
20043524-2 metselwerkpuin 67 76 9	
20051313-2 zuiveringsslib 75 126 51	
20044950-2 baggerzand 81 116 35	
20044949-2 rioolkolkenzand 82 86 4	
20044950-1 baggerzand 83 111 28	
20051313-1 zuiveringsslib 83 161 78	
20051317-1 ruimingsspecie 94 103 9	
20031332 betonsteen met bodemas 100 134	34%
20051317-2 ruimingsspecie 103 110	7%
20051315-2 ruimingsspecie 128 140	9%
20045620 vast afval 132 233	76%
20051315-1 ruimingsspecie 138 141	2%
20043525-2 zeefzand 239 208	-13%
20040020 2 20012010 200 200404947-1 straalgrit 254 299	18%
20044947-2 straalgrit 257 269	5%
20044943-2 bodemas 262 355	36%
20044943-1 bodemas 263 335	27%
20032831 vliegas 274 307	12%
20044948-2 straalgrit 294 285	-3%
20044948-1 straalgrit 305 315	3%
20044946-2 vliegas 320 349	9%
20044946-1 vliegas 324 381	18%
20032830 convecties 356 449	26%
20044944-2 bodemas 380 459	21%
20032829 bodemas 460 825	79%
20044951-1 schredder 524 535	2%
20044951-2 schredder 589 465	-21%
20044945-2 bodemas-zand 643 490	-24%
20044945-1 bodemas-zand 708 441	-38%
20044942-2 as 1050 979	-7%
20044942-1 as 1060 1058	0%
20035602 yast afval 1070 1039	-3%
20044952-2 filterkoek 19300 19460	1%
20044952-1 filterkoek 10500 20100	1 /0 1%
	4 8%
	-,070
95P 139	64%

Vergelijkende analyseresultaten: koper

Identificatie	Beschrijving	ICP-AES	ICP-AES	(X _{i,1} -X _{i,2})/	ED-XRF	ED-XRF	(X _{i,1} -X _{i,2})/
		1	2	Xgem	1	2	Xgem
		mg/kg ds	mg/kg ds		mg/kg ds	mg/kg ds	
20051312-1	zuiveringsslib	14	15	-0,07	25	16	0,43
20043524-1	metselwerkpuin	19	36	-0,62	22	33	-0,39
20043527-1	mengpuin	21	17	0,21	19	20	-0,05
20051316-1	ruimingsspecie	29	21	0,32	31	30	0,04
20044953-1	vervuilde grond	34	28	0,19	29	30	-0,04
20043525-1	zeefzand	36	47	-0,27	30	30	0,00
20044950-1	baggerzand	45	47	-0,04	49	52	-0,05
20051317-1	ruimingsspecie	169	179	-0,06	164	174	-0,06
20051313-1	zuiveringsslib	204	128	0,46	113	136	-0,18
20044948-1	straalgrit	283	217	0,26	179	172	0,04
20044952-1	filterkoek	394	413	-0,05	425	396	0,07
20044947-1	straalgrit	425	333	0,24	203	216	-0,06
20051314-1	zuiveringsslib	604	537	0,12	534	538	-0,01
20051315-1	ruimingsspecie	945	848	0,11	844	833	0,01
20044942-1	as	1360	1120	0,19	1455	1116	0,26
20044951-1	schredder	1910	1670	0,13	1364	1578	-0,15
20044943-1	bodemas	2710	2010	0,30	2344	2233	0,05
20044946-1	vliegas	3660	3700	-0,01	4207	4155	0,01
			% CV _R	17,9		$\% \text{CV}_{R}$	11,6

Vergelijkende d	analysen en	verschilberekening	ED-XRF t.o.v.	ICP-AES

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20035602	vast afval	9	12	3	
20035600	bodemas	11	15	4	
20045623	vast afval	11	12	1	
20035601	vliegas	12	14	2	
20050130	zand/slib	12	9	-4	
20035598	bodemas	13	18	5	
20051312-1	zuiveringsslib	14	25	11	
20051312-2	zuiveringsslib	15	16	1	
20040348	betonpuin	17	22	5	
20043527-2	mengpuin	17	20	3	
20043524-1	metselwerkpuin	19	22	3	
20045618	vast afval	20	21	1	
20043527-1	mengpuin	21	19	-2	
20044953-2	vervuilde grond	28	30		6%
20045617	vast afval	29	26		-11%
20051316-1	ruimingsspecie	29	31		8%
20043526-2	asfaltpuin	31	23		-27%
20044953-1	vervuilde grond	34	29		-15%
20043524-2	metselwerkpuin	36	33		-7%
20043525-1	zeefzand	36	30		-17%

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20034446	vast afval	37	42		14%
20044950-1	baggerzand	45	49		10%
20043525-2	zeefzand	47	35		-26%
20044950-2	baggerzand	47	52		11%
20044949-1	rioolkolkenzand	48	49		3%
20050099	snelbouwsteen	51	48		-5%
20045619	vast afval	87	71		-18%
20043526-1	asfaltpuin	98	59		-40%
20045621	vast afval	111	77		-31%
20032829	bodemas	124	171		38%
20051313-2	zuiveringsslib	128	136		6%
20032830	convectieas	165	189		15%
20051317-1	ruimingsspecie	169	164		-3%
20051317-2	ruimingsspecie	179	174		-3%
20051318-1	bodemverbet. middel	194	105		-46%
20032831	vliegas	197	185		-6%
20044948-2	straalgrit	217	172		-21%
20044947-2	straalgrit	333	216		-35%
20045620	vast afval	367	234		-36%
20044952-1	filterkoek	394	425		8%
20044952-2	filterkoek	413	396		-4%
20051314-2	zuiveringsslib	537	538		0%
20031332	betonsteen met bodemas	551	471		-15%
20051314-1	zuiveringsslib	604	534		-12%
20051315-2	ruimingsspecie	848	833		-2%
20051315-1	ruimingsspecie	945	844		-11%
20044942-2	as	1120	1116		0%
20044942-1	as	1360	1455		7%
20044951-2	schredder	1670	1578		-6%
20044951-1	schredder	1910	1364		-29%
20044943-2	bodemas	2010	2233		11%
20044944-2	bodemas	2180	2211		1%
20044943-1	bodemas	2710	2344		-14%
20044945-2	bodemas-zand	3620	3702		2%
20044946-1	vliegas	3660	4207		15%
20044946-2	vliegas	3700	4155		12%
			mediaan	2,7	-4,1%
			5P	-2,5	-36%
			95P	7,5	15%

Vergelijkende analyseresultaten: mangaan

Identificatie	Beschrijving	ICP-AES	ICP-AES	(X _{i,1} -X _{i,2})/	ED-XRF	ED-XRF	(X _{i,1} -X _{i,2})/
		1	2	Xgem	1	2	Xgem
		mg/kg ds	mg/kg ds		mg/kg ds	mg/kg ds	
20051316-1	ruimingsspecie	72	73	-0,01	76	77	-0,01
20044950-1	baggerzand	207	204	0,01	225	215	0,04
20044953-1	vervuilde grond	211	211	0,00	216	230	-0,06
20051317-1	ruimingsspecie	245	253	-0,03	238	244	-0,03
20051315-1	ruimingsspecie	261	235	0,10	229	233	-0,02
20044949-1	rioolkolkenzand	343	306	0,11	318	286	0,11
20051314-1	zuiveringsslib	522	484	0,08	479	481	0,00
20051318-1	bodemverbet. middel	612	606	0,01	674	756	-0,11
20051313-1	zuiveringsslib	746	698	0,07	758	805	-0,06
20044943-1	bodemas	895	974	-0,08	840	875	-0,04
20044946-1	vliegas	904	916	-0,01	963	943	0,02
20044944-1	bodemas	935	875	0,07	816	777	0,05
20044948-1	straalgrit	984	945	0,04	881	852	0,03
20051312-1	zuiveringsslib	1140	1150	-0,01	1051	1051	0,00
20044952-1	filterkoek	1160	1130	0,03	1275	1178	0,08
20044947-1	straalgrit	1200	1210	-0,01	1115	1120	0,00
20044945-1	bodemas-zand	1270	1300	-0,02	1012	1024	-0,01
20044951-1	schredder	1420	1410	0,01	1258	1235	0,02
			% CV _R	3,7		% CV _R	3,6

Vergeliikende	analvsen er	verschilberekening	ED-XRF t.o.v.	ICP-AES
, er genijkende	chickey bert et	versenneer enerning	LD 1111 1.0.1.	ICI IILD

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20051316-1	ruimingsspecie	72	76	4	6%
20051316-2	ruimingsspecie	73	77	4	6%
20044950-2	baggerzand	204	215	11	5%
20044950-1	baggerzand	207	225	18	8%
20044953-1	vervuilde grond	211	216	5	2%
20044953-2	vervuilde grond	211	230	19	9%
20051315-2	ruimingsspecie	235	233	-2	-1%
20051317-1	ruimingsspecie	245	238	-7	-3%
20051317-2	ruimingsspecie	253	244	-9	-4%
20051315-1	ruimingsspecie	261	229	-32	-12%
20044949-2	rioolkolkenzand	306	286	-20	-6%
20044942-2	as	331	359	28	8%
20044949-1	rioolkolkenzand	343	318	-25	-7%
20051314-2	zuiveringsslib	484	481	-3	-1%
20051314-1	zuiveringsslib	522	479	-43	-8%
20051318-2	bodemverbet. middel	606	756	150	25%
20051318-1	bodemverbet. middel	612	674	62	10%
20051313-2	zuiveringsslib	698	805	107	15%
20051313-1	zuiveringsslib	746	758	12	2%
20044942-1	as	832	745	-87	-10%

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20044944-2	bodemas	875	777	-98	-11%
20044943-1	bodemas	895	840	-55	-6%
20044946-1	vliegas	904	963	59	6%
20044946-2	vliegas	916	943	27	3%
20044944-1	bodemas	935	816	-119	-13%
20044948-2	straalgrit	945	852	-93	-10%
20044943-2	bodemas	974	875	-99	-10%
20044948-1	straalgrit	984	881	-103	-10%
20044952-2	filterkoek	1130	1178	48	4%
20051312-1	zuiveringsslib	1140	1051	-89	-8%
20051312-2	zuiveringsslib	1150	1051	-99	-9%
20044952-1	filterkoek	1160	1275	115	10%
20044947-1	straalgrit	1200	1115	-85	-7%
20044947-2	straalgrit	1210	1120	-90	-7%
20044945-1	bodemas-zand	1270	1012	-258	-20%
20044945-2	bodemas-zand	1300	1024	-276	-21%
20044951-2	schredder	1410	1235	-175	-12%
20044951-1	schredder	1420	1258	-162	-11%
				mediaan	-4,9%
				5P	-14%
				95P	11%

Vergelijkende analyseresultaten: molybdeen

Identificatie	Beschrijving	ICP-AES	ICP-AES	(X _{i,1} -X _{i,2})/	ED-XRF	ED-XRF	(X _{i,1} -X _{i,2})/
		1	2	Xgem	1	2	Xgem
		mg/kg ds	mg/kg ds		mg/kg ds	mg/kg ds	
20044947-1	straalgrit	10	11	-0,10	14	14	-0,01
20044948-1	straalgrit	12	11	0,09	15	14	0,08
20044942-1	as	23	25	-0,08	29	29	0,01
20044945-1	bodemas-zand	34	19	0,57	22	22	-0,01
20044951-1	schredder	68	73	-0,07	74	74	0,00
20044946-1	vliegas	631	630	0,00	648	643	0,01
20044952-1	filterkoek	1010	1000	0,01	1094	1060	0,03
			% CV _R	15,8		% CV _R	2,3

Vergelijkende analysen en verschilberekening ED-XRF t.o.v. ICP-AES

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20044944-2	bodemas	10	14	4	
20044947-1	straalgrit	10	14	4	
20051314-1	zuiveringsslib	10	11	1	
20044947-2	straalgrit	11	14	3	
20044948-2	straalgrit	11	14	3	
20044948-1	straalgrit	12	15	3	
20044945-2	bodemas-zand	19	22	3	
20044942-1	as	23	29	6	
20044942-2	as	25	29	4	
20044951-1	schredder	68	74		9%
20044951-2	schredder	73	74		1%
20044946-2	vliegas	630	643		2%
20044946-1	vliegas	631	648		3%
20044952-2	filterkoek	1000	1060		6%
20044952-1	filterkoek	1010	1094		8%
			mediaan	3,3	4,3%
			5P	1,7	1,4%
			95P	5,4	9,0%

Vergelijkende analyseresultaten: nikkel

Identificatie	Beschrijving	ICP-AES	ICP-AES	(X _{i,1} -X _{i,2})/	ED-XRF	ED-XRF	(X _{i,1} -X _{i,2})/
		1	2	Xgem	1	2	Xgem
		mg/kg ds	mg/kg ds		mg/kg ds	mg/kg ds	
20051316-1	ruimingsspecie	12	11	0,09	8	8	0,01
20043525-1	zeefzand	16	15	0,06	13	10	0,24
20044950-1	baggerzand	16	16	0,00	17	15	0,10
20044953-1	vervuilde grond	16	15	0,06	15	14	0,09
20051318-1	bodemverbet. middel	16	17	-0,06	9	8	0,16
20043526-1	asfaltpuin	19	18	0,05	15	18	-0,17
20043527-1	mengpuin	20	18	0,11	16	15	0,08
20043524-1	metselwerkpuin	25	24	0,04	21	21	0,01
20051314-1	zuiveringsslib	32	31	0,03	29	32	-0,10
20051315-1	ruimingsspecie	35	33	0,06	30	28	0,05
20051317-1	ruimingsspecie	35	39	-0,11	33	31	0,04
20051313-1	zuiveringsslib	36	32	0,12	31	34	-0,09
20044949-1	rioolkolkenzand	38	44	-0,15	34	28	0,18
20044943-1	bodemas	118	139	-0,16	125	103	0,20
20044947-1	straalgrit	153	152	0,01	151	148	0,02
20044944-1	bodemas	160	177	-0,10	168	167	0,01
20044948-1	straalgrit	162	160	0,01	155	156	-0,01
20044945-1	bodemas-zand	293	251	0,15	177	166	0,06
20044946-1	vliegas	444	448	-0,01	507	498	0,02
20044942-1	as	600	629	-0,05	641	625	0,03
20044951-1	schredder	647	658	-0,02	526	577	-0,09
20044952-1	filterkoek	13700	13800	-0,01	14230	13650	0,04
			% CV _R	5,8		% CV _R	7,5

Duplo analysen

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20045623	vast afval	6,8	8	2	
20051312-1	zuiveringsslib	9,6	9,8	0	
20050130	zand/slib	10	9	-1	
20035602	vast afval	11	10	-1	
20051316-2	ruimingsspecie	11	7,8	-3	
20050901	bodemas	12	19	7	
20051316-1	ruimingsspecie	12	7,9	-4	
20043525-2	zeefzand	15	10	-5	
20044953-2	vervuilde grond	15	14	-1	
20050900	bodemas	15	18	3	
20043525-1	zeefzand	16	13	-3	
20044950-1	baggerzand	16	17	1	
20044950-2	baggerzand	16	15	-1	
20044953-1	vervuilde grond	16	15	-1	
20051318-1	bodemverbet. middel	16	9	-7	
20051318-2	bodemverbet. middel	17	7,8	-9	
20040348	betonpuin	18	17	-1	

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20043526-2	asfaltpuin	18	18	0	
20043527-2	mengpuin	18	15	-3	
20045618	vast afval	18	25	7	
20043526-1	asfaltpuin	19	15	-4	
20035598	bodemas	20	21	1	
20035601	vliegas	20	18	-2	
20043527-1	mengpuin	20	16	-4	
20035600	bodemas	21	23	2	
20043524-2	metselwerkpuin	24	21	-3	
20045617	vast afval	24	24	0	
20043524-1	metselwerkpuin	25	21	-4	
20051314-2	zuiveringsslib	31	32		4%
20051313-2	zuiveringsslib	32	34		6%
20051314-1	zuiveringsslib	32	29		-8%
20045619	vast afval	33	31		-5%
20051315-2	ruimingsspecie	33	28		-14%
20051315-1	ruimingsspecie	35	30		-15%
20051317-1	ruimingsspecie	35	33		-6%
20051313-1	zuiveringsslib	36	31		-14%
20044949-1	rioolkolkenzand	38	34		-12%
20051317-2	ruiminasspecie	39	31		-19%
20044949-2	rioolkolkenzand	44	28		-37%
20045621	vast afval	47	60		28%
20031332	betonsteen met bodemas	55	54		-3%
20045620	vast afval	71	44		-37%
20032831	vliegas	77	77		0%
20044943-1	bodemas	118	125		6%
20044943-2	bodemas	139	103		-26%
20044947-2	straalgrit	152	148		-2%
20044947-1	straalgrit	153	151		-1%
20044944-1	bodemas	160	168		5%
20044948-2	straalgrit	160	156		-3%
20044948-1	straalgrit	162	155		-5%
20032830	convectieas	173	165		-5%
20044944-2	bodemas	177	167		-6%
20044945-2	bodemas-zand	251	166		-34%
20044945-1	bodemas-zand	293	177		-40%
20044946-1	vliegas	444	507		14%
20044946-2	vliegas	448	498		11%
20044942-1	as	600	641		7%
20044942-2	as	629	625		-1%
20044951-1	schredder	647	526		-19%
20044951-2	schredder	658	577		-12%
20044952-1	filterkoek	13700	14230		4%
20044952-2	filterkoek	13800	13650		-1%
·			mediaan	-1,0	-4,6%
			5P	-6,1	-37%
			95P	5,7	12%

Vergelijkende analyseresultaten: lood

Identificatie	Beschrijving	ICP-AES	ICP-AES	(X _{i,1} -X _{i,2})/	ED-XRF	ED-XRF	(X _{i,1} -X _{i,2})/
		1	2	Xgem	1	2	Xgem
		mg/kg ds	mg/kg ds		mg/kg ds	mg/kg ds	
20044952-1	filterkoek	28	29	-0,04	39	32	0,19
20043527-1	mengpuin	35	35	0,00	20	20	0,00
20044950-1	baggerzand	51	51	0,00	57	56	0,02
20051318-1	bodemverbet. middel	60	52	0,14	39	44	-0,11
20043524-1	metselwerkpuin	72	83	-0,14	59	65	-0,10
20043525-1	zeefzand	85	119	-0,33	71	82	-0,15
20044949-1	rioolkolkenzand	107	94	0,13	97	85	0,13
20044953-1	vervuilde grond	119	118	0,01	113	116	-0,03
20051313-1	zuiveringsslib	155	154	0,01	143	154	-0,07
20051316-1	ruimingsspecie	202	184	0,09	167	165	0,01
20051314-1	zuiveringsslib	257	239	0,07	245	243	0,01
20051317-1	ruimingsspecie	322	345	-0,07	328	336	-0,02
20044947-1	straalgrit	348	337	0,03	274	281	-0,03
20044948-1	straalgrit	486	450	0,08	407	394	0,03
20044944-1	bodemas	1950	2030	-0,04	1808	1870	-0,03
20051315-1	ruimingsspecie	1740	1720	0,01	1476	1660	-0,12
20044945-1	bodemas-zand	2120	2220	-0,05	1970	2096	-0,06
20044942-1	as	5250	5490	-0,04	3181	3181	0,00
20044951-1	schredder	7740	7490	0,03	6955	6807	0,02
20044946-1	vliegas	14600	14900	-0,02	15080	14900	0,01
			% CV _R	7,1		% CV _R	5,5

Duplo analysen

0 2		0			
Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20035601	vliegas	13	13	0	-3%
20044952-1	filterkoek	28	39	11	39%
20044952-2	filterkoek	29	32	3	11%
20045618	vast afval	32	35	3	9%
20040348	betonpuin	33	37	4	11%
20043527-1	mengpuin	35	20	-15	-43%
20043527-2	mengpuin	35	20	-15	-42%
20045617	vast afval	40	39	-1	-3%
20044950-1	baggerzand	51	57	6	13%
20044950-2	baggerzand	51	56	5	10%
20051318-2	bodemverbet. middel	52	44	-8	-16%
20043526-2	asfaltpuin	60	44	-16	-26%
20050900	bodemas	60	61	1	1%
20051318-1	bodemverbet. middel	60	39	-21	-35%
20045621	vast afval	70	90	20	28%
20043524-1	metselwerkpuin	72	59	-13	-18%
20043524-2	metselwerkpuin	83	65	-18	-22%
20043525-1	zeefzand	85	71	-14	-17%

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
	, ,	mg/kg ds	mg/kg ds	mg/kg ds	%
20044949-2	rioolkolkenzand	94	85	-9	-9%
20044949-1	rioolkolkenzand	107	97	-10	-10%
20032829	bodemas	116	163	47	40%
20044953-2	vervuilde grond	118	116	-2	-2%
20044953-1	vervuilde grond	119	113	-6	-5%
20051313-2	zuiveringsslib	154	154	0	0%
20051313-1	zuiveringsslib	155	143	-12	-8%
20051316-2	ruimingsspecie	184	165	-19	-10%
20051316-1	ruimingsspecie	202	167	-35	-17%
20045619	vast afval	225	217	-8	-4%
20051314-2	zuiveringsslib	239	243	4	2%
20051314-1	zuiveringsslib	257	245	-12	-5%
20051317-1	ruimingsspecie	322	328	6	2%
20045620	vast afval	330	221	-109	-33%
20043526-1	asfaltpuin	333	267	-66	-20%
20044947-2	straalgrit	337	281	-56	-16%
20051317-2	ruimingsspecie	345	336	-9	-3%
20044947-1	straalgrit	348	274	-74	-21%
20031332	betonsteen met bodemas	370	347	-23	-6%
20032830	convectieas	440	501	61	14%
20044948-2	straalgrit	450	394	-56	-12%
20044948-1	straalgrit	486	407	-79	-16%
20032831	vliegas	652	653	1	0%
20044943-2	bodemas	1590	1473	-117	-7%
20051315-2	ruimingsspecie	1720	1660	-60	-3%
20051315-1	ruimingsspecie	1740	1476	-264	-15%
20044944-2	bodemas	1950	1808	-142	-7%
20044944-1	bodemas	2030	1870	-160	-8%
20044945-1	bodemas-zand	2120	1970	-150	-7%
20044945-2	bodemas-zand	2220	2096	-124	-6%
20044942-1	as	5250	3181	-2069	-39%
20044942-2	as	5490	3223	-2267	-41%
20044951-2	schredder	7490	6807	-683	-9%
20044951-1	schredder	7740	6955	-785	-10%
20044946-1	vliegas	14600	15080	480	3%
20044946-2	vliegas	14900	14900	0	0%
	·			mediaan	-7,2%
				5P	-40%
				95P	19%

Vergelijkende analyseresultaten: antimoon

Identificatie	Beschrijving	ICP-AES	ICP-AES	(X _{i,1} -X _{i,2})/	ED-XRF	ED-XRF	(X _{i,1} -X _{i,2})/
		1	2	Xgem	1	2	Xgem
		mg/kg ds	mg/kg ds		mg/kg ds	mg/kg ds	
20044949-1	rioolkolkenzand	5,5	8,2	-0,39	4,2	4,8	-0,13
20051317-1	ruimingsspecie	5,5	6,5	-0,17	7,5	7,8	-0,04
20044953-1	vervuilde grond	6,9	7,2	-0,04			
20044950-1	baggerzand	8,2	8,4	-0,02	4,5	4,2	0,07
20051314-1	zuiveringsslib	11	11	0,00	11	11	0,02
20051316-1	ruimingsspecie	12	13	-0,08	5,0	5,4	-0,08
20051318-1	bodemverbet. middel	15	17	-0,13	21	19	0,12
20051315-1	ruimingsspecie	18	18	0,00	15	16	-0,04
20044947-1	straalgrit	21	20	0,05	11	9	0,22
20051313-1	zuiveringsslib	21	21	0,00	22	23	-0,05
20044948-1	straalgrit	29	29	0,00	18	17	0,06
20044943-1	bodemas	67	60	0,11	69	62	0,11
20044944-1	bodemas	134	149	-0,11	139	145	-0,04
20044945-1	bodemas-zand	176	180	-0,02	180	174	0,04
20044951-1	schredder	185	187	-0,01	205	211	-0,03
20044942-1	as	262	229	0,13	226	200	0,12
20044946-1	vliegas	578	541	0,07	624	606	0,03
			$\% CV_R$	8,7		$\% \text{CV}_{\text{R}}$	6,4

Duplo analysen

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20044949-1	rioolkolkenzand	5,5	4,2	-1	
20051317-1	ruimingsspecie	5,5	7,5	2	
20051317-2	ruimingsspecie	6,5	7,8	1	
20044953-1	vervuilde grond	6,9	2,9	-4	
20044953-2	vervuilde grond	7,2	6,1	-1	
20044949-2	rioolkolkenzand	8,2	4,8	-3	
20044950-1	baggerzand	8,2	4,5	-4	
20044950-2	baggerzand	8,4	4,2	-4	
20051314-1	zuiveringsslib	11	11	0	
20051314-2	zuiveringsslib	11	11	0	
20051316-1	ruimingsspecie	12	5,0	-7	
20051316-2	ruimingsspecie	13	5,4	-8	
20051318-1	bodemverbet. middel	15	21	6	
20051318-2	bodemverbet. middel	17	19	2	
20051315-1	ruimingsspecie	18	15	-3	
20051315-2	ruimingsspecie	18	16	-2	
20050900	bodemas	19	18	-1	
20044947-2	straalgrit	20	8,7	-11	
20044947-1	straalgrit	21	11	-10	
20051313-1	zuiveringsslib	21	22	1	
20051313-2	zuiveringsslib	21	23	2	

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20044948-1	straalgrit	29	18		-37%
20044948-2	straalgrit	29	17		-40%
20044943-2	bodemas	60	62		3%
20044943-1	bodemas	67	69		2%
20044944-1	bodemas	134	139		4%
20044944-2	bodemas	149	145		-3%
20044945-1	bodemas-zand	176	180		2%
20044945-2	bodemas-zand	180	174		-3%
20044951-1	schredder	185	205		11%
20044951-2	schredder	187	211		13%
20044942-2	as	229	200		-13%
20044942-1	as	262	226		-14%
20044946-2	vliegas	541	606		12%
20044946-1	vliegas	578	624		8%
			mediaan	-1,3	2,3%
			5P	-10	-38%
			95P	2,1	12%
Vergelijkende analyseresultaten: tin

Identificatie	Beschrijving	ICP-AES	ICP-AES	(X _{i,1} -X _{i,2})/	ED-XRF	ED-XRF	(X _{i,1} -X _{i,2})/
		1	2	Xgem	1	2	Xgem
		mg/kg ds	mg/kg ds		mg/kg ds	mg/kg ds	
20044942-1	as	143	129	0,10	192	186	0,03
20044943-1	bodemas	191	166	0,14	344	274	0,23
20044944-1	bodemas	190	239	-0,23	406	406	0,00
20044945-1	bodemas-zand	208	347	-0,50	355	368	-0,04
20044946-1	vliegas	1870	1840	0,02	2143	2090	0,03
20044947-1	straalgrit	78	69	0,12	80	65	0,21
20044948-1	straalgrit	35	27	0,26	43	39	0,10
20044951-1	schredder	412	441	-0,07	545	509	0,07
20051313-1	zuiveringsslib	21	10	0,71	38	19	0,67
20051314-1	zuiveringsslib	20	27	-0,30	31	31	0,01
20051315-1	ruimingsspecie	95	106	-0,11	115	121	-0,05
20051317-1	ruimingsspecie	20	22	-0,10	25	25	-0,02
20051318-1	bodemverbet. middel	12	10	0,18	18	16	0,11
			$\% CV_R$	20,3		$\% \text{CV}_{\text{R}}$	14,9

Duplo analysen

Vergelijkende analysen en verschilberekening ED-XRF t.o.v. ICP-AES

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20051318-2	bodemverbet. middel	9,8	16	6	
20051313-2	zuiveringsslib	10	19	9	
20051318-1	bodemverbet. middel	12	18	6	
20043525-2	zeefzand	13	11	-2	
20051314-1	zuiveringsslib	20	31	11	
20051317-1	ruimingsspecie	20	25	5	
20051313-1	zuiveringsslib	21	38	17	
20051317-2	ruimingsspecie	22	25	3	
20044948-2	straalgrit	27	39		43%
20051314-2	zuiveringsslib	27	31		16%
20044948-1	straalgrit	35	43		23%
20044947-2	straalgrit	69	65		-5%
20044947-1	straalgrit	78	80		2%
20051315-1	ruimingsspecie	95	115		21%
20051315-2	ruimingsspecie	106	121		14%
20044942-2	as	129	186		44%
20044942-1	as	143	192		34%
20044943-2	bodemas	166	274		65%
20043526-1	asfaltpuin	180	206		14%
20044944-1	bodemas	190	406		113%
20044943-1	bodemas	191	344		80%
20044944-2	bodemas	239	406		70%
20044945-2	bodemas-zand	347	368		6%
20044951-1	schredder	412	545		32%
20044951-2	schredder	441	509		15%

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20044946-2	vliegas	1840	2090		14%
20044946-1	vliegas	1870	2143		15%
			mediaan	5,8	21%
			5P	-0,4	1,7%
			95P	15	84%

Vergelijkende analyseresultaten: vanadium

Identificatie	Beschrijving	ICP-AES	ICP-AES	(X _{i,1} -X _{i,2})/	ED-XRF	ED-XRF	(X _{i,1} -X _{i,2})/
		1	2	Xgem	1	2	Xgem
		mg/kg ds	mg/kg ds		mg/kg ds	mg/kg ds	
20044950-1	baggerzand	35	35	0,00	25	27	-0,07
20044943-1	bodemas	37	37	0,00	27	24	0,11
20044953-1	vervuilde grond	38	37	0,03	34	35	-0,02
20051314-1	zuiveringsslib	38	37	0,03	28	31	-0,11
20051317-1	ruimingsspecie	42	44	-0,05	28	35	-0,21
20051313-1	zuiveringsslib	50	49	0,02	44	48	-0,08
20044945-1	bodemas-zand	56	58	-0,04	35	26	0,31
20044952-1	filterkoek	57	57	0,00	70	73	-0,04
20051316-1	ruimingsspecie	58	54	0,07	50	51	-0,02
20044946-1	vliegas	63	65	-0,03	32	48	-0,39
20051315-1	ruimingsspecie	70	66	0,06	63	68	-0,08
20044949-1	rioolkolkenzand	82	80	0,02	91	89	0,02
20044944-1	bodemas	87	91	-0,04	81	62	0,26
20044947-1	straalgrit	262	273	-0,04	245	278	-0,13
20044948-1	straalgrit	342	341	0,00	313	331	-0,06
			% CV _R	2,5		% CV _R	11,9

Duplo analysen

Vergelijkende analysen en verschilberekening ED-XRF t.o.v. ICP-AES

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20044950-1	baggerzand	35	25	-10	-28%
20044950-2	baggerzand	35	27	-9	-24%
20044943-1	bodemas	37	27	-10	-27%
20044943-2	bodemas	37	24	-13	-36%
20044953-2	vervuilde grond	37	35	-2	-5%
20051314-2	zuiveringsslib	37	31	-6	-17%
20044953-1	vervuilde grond	38	34	-4	-9%
20051314-1	zuiveringsslib	38	28	-10	-27%
20051317-1	ruimingsspecie	42	28	-14	-32%
20051317-2	ruimingsspecie	44	35	-9	-20%
20051313-2	zuiveringsslib	49	48	-1	-2%
20051313-1	zuiveringsslib	50	44	-6	-11%
20051316-2	ruimingsspecie	54	51	-3	-6%
20044945-1	bodemas-zand	56	35	-21	-37%
20044952-1	filterkoek	57	70	13	24%
20044945-2	bodemas-zand	58	26	-32	-56%
20044952-2	filterkoek	58	73	15	26%
20051316-1	ruimingsspecie	58	50	-8	-13%
20044946-1	vliegas	63	32	-31	-49%
20044946-2	vliegas	65	48	-17	-27%
20051315-2	ruimingsspecie	66	68	2	3%
20051315-1	ruimingsspecie	70	63	-8	-11%
20044949-2	rioolkolkenzand	80	89	9	11%

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20044949-1	rioolkolkenzand	82	91	9	11%
20044944-1	bodemas	87	81	-6	-7%
20044944-2	bodemas	91	62	-29	-32%
20044947-1	straalgrit	262	245	-17	-7%
20044947-2	straalgrit	273	278	5	2%
20044948-2	straalgrit	341	331	-10	-3%
20044948-1	straalgrit	342	313	-29	-8%
				mediaan	-11%
				5P	-43%
				95P	18%

Vergelijkende analyseresultaten: zink

Identificatie	Beschrijving	ICP-AES	ICP-AES	(X _{i,1} -X _{i,2})/	ED-XRF	ED-XRF	(X _{i,1} -X _{i,2})/
		1	2	Xgem	1	2	Xgem
		mg/kg ds	mg/kg ds		mg/kg ds	mg/kg ds	
20051312-1	zuiveringsslib	54	54	0,00	46	42	0,10
20043527-1	mengpuin	152	137	0,10	124	110	0,12
20044949-1	rioolkolkenzand	209	218	-0,04	160	162	-0,01
20044953-1	vervuilde grond	218	255	-0,16	176	199	-0,12
20051316-1	ruimingsspecie	221	212	0,04	176	176	0,00
20044950-1	baggerzand	245	241	0,02	233	233	0,00
20043524-1	metselwerkpuin	309	431	-0,33	255	308	-0,19
20043525-1	zeefzand	386	484	-0,23	321	380	-0,17
20051313-1	zuiveringsslib	639	609	0,05	434	478	-0,10
20051317-1	ruimingsspecie	805	871	-0,08	735	770	-0,05
20051318-1	bodemverbet. middel	1110	1250	-0,12	776	802	-0,03
20044942-1	as	1170	970	0,19	1133	926	0,20
20051314-1	zuiveringsslib	1360	1190	0,13	1101	1113	-0,01
20051315-1	ruimingsspecie	1530	1380	0,10	1266	1263	0,00
20044948-1	straalgrit	1880	1790	0,05	1169	1094	0,07
20044943-1	bodemas	3240	3190	0,02	3141	3130	0,00
20044947-1	straalgrit	4220	4410	-0,04	2530	2592	-0,02
20044944-1	bodemas	4530	5450	-0,18	4788	5471	-0,13
20044945-1	bodemas-zand	5670	5390	0,05	5660	5563	0,02
20044951-1	schredder	29200	23800	0,20	20260	20120	0,01
20044946-1	vliegas	55200	55800	-0,01	55690	55170	0,01
			% CV _R	9,4		% CV _R	6,5

Duplo analysen

V	<i>ergelijkende</i>	analysen er	<i>verschilberekening</i>	ED-XRF t.o.v.	ICP-AES

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20035602	vast afval	26	26	0	-1%
20050130	zand/slib	26	21	-6	-21%
20045623	vast afval	31	20	-11	-35%
20035600	bodemas	32	28	-5	-14%
20035598	bodemas	39	32	-7	-18%
20035601	vliegas	39	28	-12	-29%
20045622	vast afval	49	46	-3	-7%
20051312-1	zuiveringsslib	54	46	-8	-14%
20051312-2	zuiveringsslib	54	42	-12	-22%
20044952-2	filterkoek	58	71	13	22%
20050099	snelbouwsteen	64	65	1	1%
20050100	snelbouwsteen	67	65	-2	-3%
20040348	betonpuin	108	119	11	10%
20043527-2	mengpuin	137	110	-27	-20%
20043527-1	mengpuin	152	124	-28	-18%
20043526-2	asfaltpuin	156	115	-41	-26%
20045617	vast afval	161	138	-23	-14%
20045618	vast afval	172	138	-34	-20%

Identificatie	Beschrijving	ICP-AES	ED-XRF	Abs.verschil	Rel. verschil
		mg/kg ds	mg/kg ds	mg/kg ds	%
20044949-1	rioolkolkenzand	209	160	-49	-23%
20051316-2	ruimingsspecie	212	176	-36	-17%
20044949-2	rioolkolkenzand	218	162	-56	-26%
20044953-1	vervuilde grond	218	176	-43	-19%
20045621	vast afval	220	227	7	3%
20051316-1	ruimingsspecie	221	176	-45	-20%
20044950-2	baggerzand	241	233	-8	-3%
20044950-1	baggerzand	245	233	-12	-5%
20044953-2	vervuilde grond	255	199	-56	-22%
20032829	bodemas	270	327	57	21%
20043524-1	metselwerkpuin	309	255	-54	-17%
20043525-1	zeefzand	386	321	-66	-17%
20051313-2	zuiveringsslib	609	478	-131	-22%
20051313-1	zuiveringsslib	639	434	-205	-32%
20051317-1	ruimingsspecie	805	735	-70	-9%
20051317-2	ruimingsspecie	871	770	-101	-12%
20044942-2	as	970	926	-44	-5%
20051318-1	bodemverbet. middel	1110	776	-334	-30%
20044942-1	as	1170	1133	-37	-3%
20050901	bodemas	1170	1174	4	0%
20051314-2	zuiveringsslib	1190	1113	-77	-6%
20050900	bodemas	1200	950	-250	-21%
20032830	convectieas	1210	1124	-86	-7%
20045619	vast afval	1210	1100	-110	-9%
20051318-2	bodemverbet. middel	1250	802	-448	-36%
20051314-1	zuiveringsslib	1360	1101	-259	-19%
20051315-2	ruimingsspecie	1380	1263	-117	-8%
20043526-1	asfaltpuin	1480	1132	-348	-24%
20051315-1	ruimingsspecie	1530	1266	-264	-17%
20032831	vliegas	1600	1437	-163	-10%
20044948-2	straalgrit	1790	1094	-696	-39%
20044948-1	straalgrit	1880	1169	-711	-38%
20031332	betonsteen met bodemas	2430	2009	-421	-17%
20044943-2	bodemas	3190	3130	-60	-2%
20044943-1	bodemas	3240	3141	-99	-3%
20044947-1	straalgrit	4220	2530	-1690	-40%
20044947-2	straalgrit	4410	2592	-1818	-41%
20044944-1	bodemas	4530	4788	258	6%
20044945-2	bodemas-zand	5390	5563	173	3%
20044944-2	bodemas	5450	5471	21	0%
20044945-1	bodemas-zand	5670	5660	-10	0%
20044951-2	schredder	23800	20120	-3680	-15%
20044951-1	schredder	29200	20260	-8940	-31%
20044946-1	vliegas	55200	55690	490	1%
20044946-2	vliegas	55800	55170	-630	-1%
				mediaan	-15%
				5P	-38%
				95P	5,5%