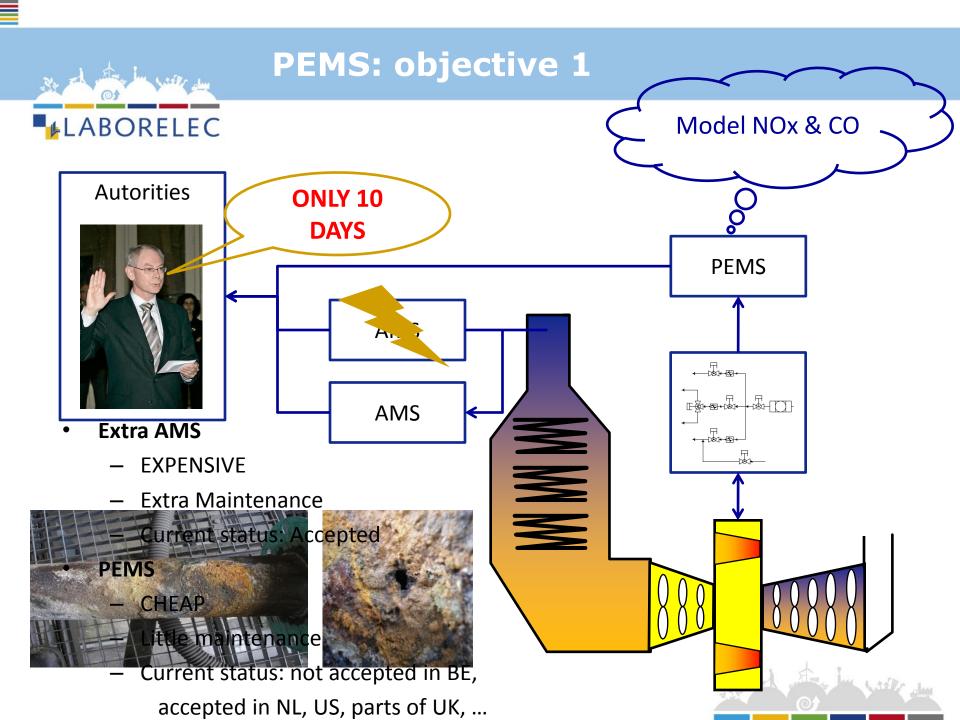
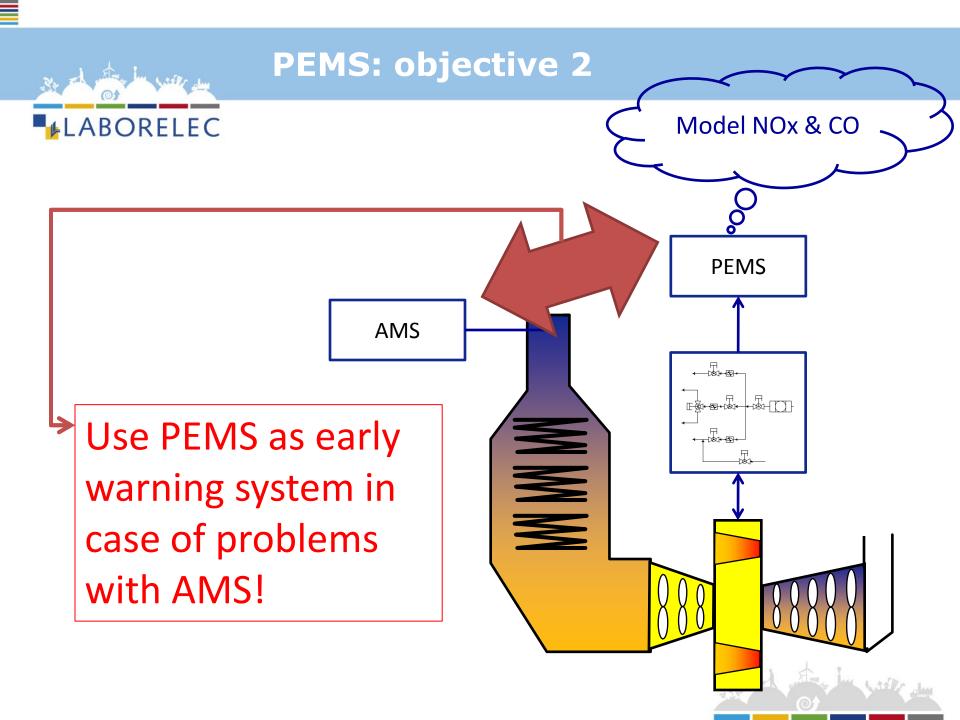


Predictive Emission Monitoring System (PEMS) as back-up for the monitoring of emissions in case of AMS failure

jan.mertens@laborelec.com

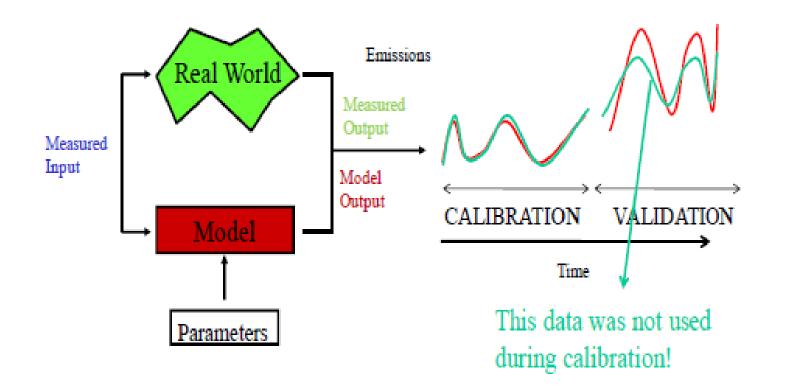
Contents

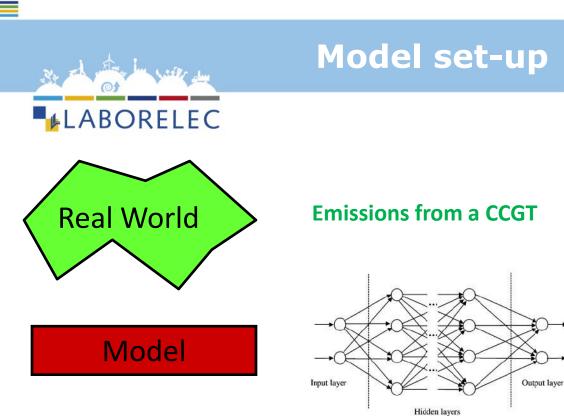



Objective

- NO_x & CO modelling
 - Model set-up?
 - Modelling
 - Implementation
 - Results & Follow-up
- Quality Assurance

Conclusion




Model set-up

LABORELEC

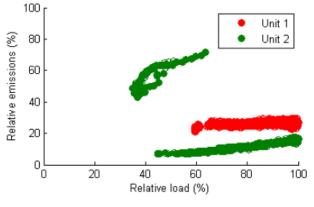
Modelling

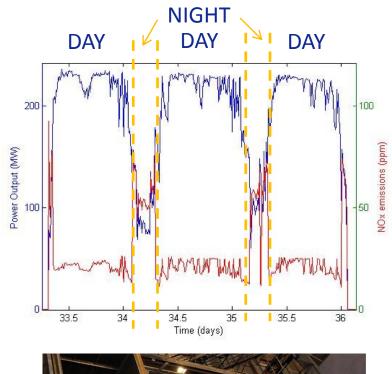
Measured Input

Measured Output

Calculated Output 9 Inputs : Temperatures of combustion, Pressures in combustion chamber, Lower heating value of methane, air valve positions, ...

NOx and CO by the on-site AMS

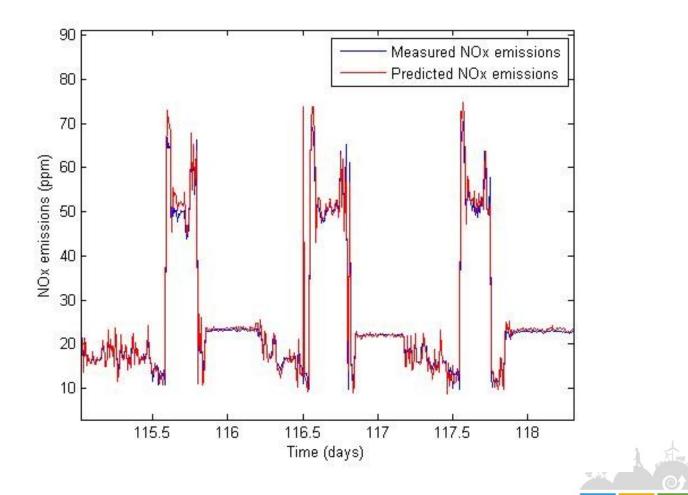

NOx and CO by the on-site AMS

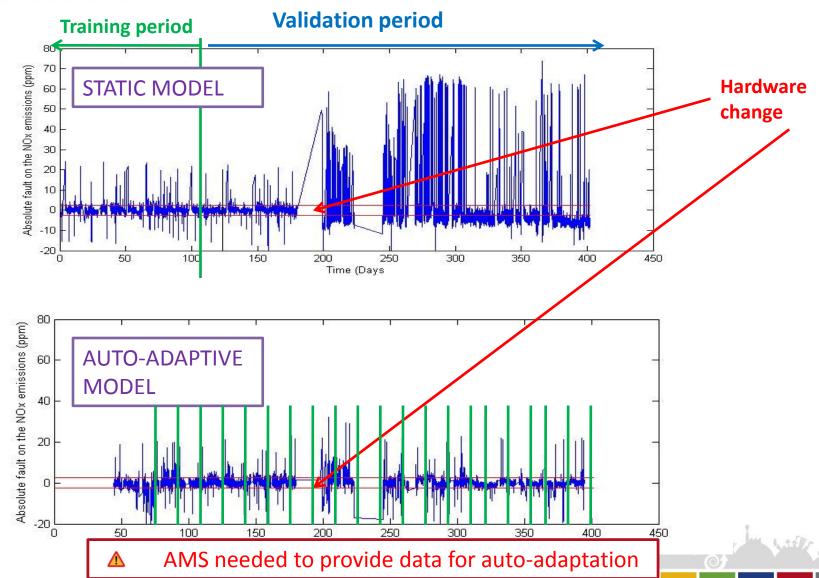

₽LABORELEC

٥

- Test case selection (2009)
 - Offline test
 - Eems 5: GE 9FA 230 MWe

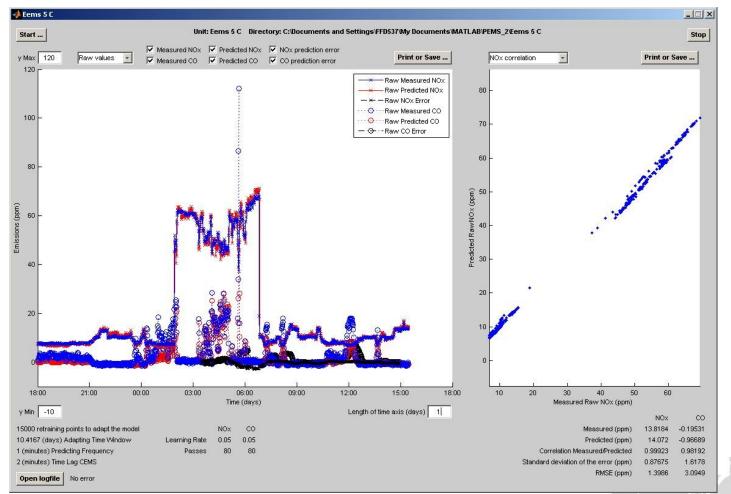
Later... SIE V94.2, GE 9FB ...





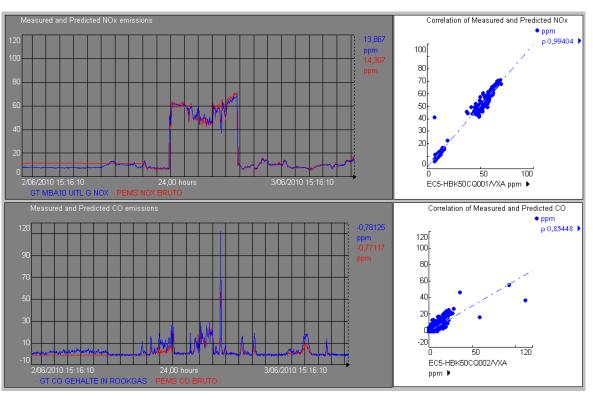
LABORELEC

Results



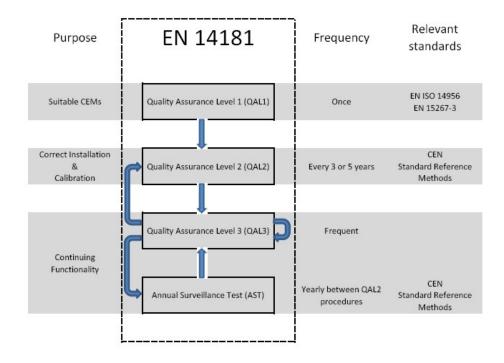
LABORELEC

LABORELEC


Implementation in MATLAB \Leftrightarrow PI (2010)

LABORELEC

- Results & Follow-up (2010)
 - Long term stability ?
 - NOx ☺


🖸 CO 😳

LABORELEC

the here with the

Translating EN14181 to PEMS: (2010)

٩

9

0

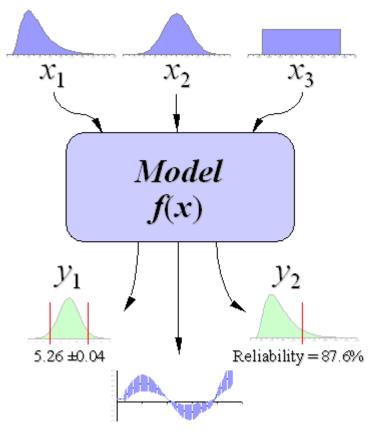
QAL1:
$$U_{PEMS} = !\sqrt{u_{input}^2 + !_{mod\,elling}^2 + !_{analyser}^2}$$

u_{Input} = uncertainty related to inputs (T & P, valve positions ,...)

u_{modelling} = modelling error, goodness-of-fit measure (RMSE)

 $u_{analyser}$ = measurement error of AMS (S_{AMS}) and O_2 AMS

The calculated U_{PEMS} must be < LCPD uncertainty


(= 20% of ELV for NOx and 10 % of ELV for CO)

 $U_{PEMS} = !\sqrt{u_{input}^2 + !_{mod\,elling}^2 + !_{analyser}^2}$

u_{Input} = uncertainty related to inputs

> estimate error for each input and carry out a **Monte Carlo analysis**

ABORELEC

* Generate 10,000 sets of inputs: 1 set = 9 input values with random 'error' added (eg. for Temperature , assume 1 K max. error so 1 K = 3 σ)

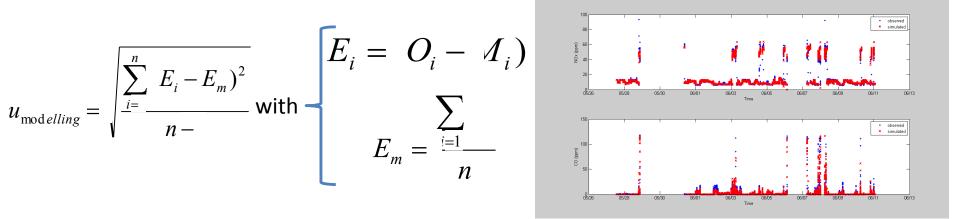
* 10,000 model runs (1 run = 15000 minutes or a little over 10 days)

* Analyse effect of error on inputs on simulated NO_x and CO ⇒
calculate standard deviation per
(i) minute or (ii) per 30 minutes and take maximum over entire period

$U_{PEMS} = !\sqrt{u_{input}^2 + v_{mod\,elling}^2 + v_{analyser}^2}$

 \Box u_{Input} = uncertainty related to inputs

LABORELEC


- \Rightarrow estimate error for each input and carry out a Monte Carlo analysis
- * CASE 1: model run every 1 minute and average NO_x and CO on 30 minutes:
 - * u_{NOx} = 0.1 ppm & u_{CO} = 0.3 ppm

- * CASE 2: model every 1 minute and report NO_x and CO every 1 minute:
 - * u_{NOx} = 1.4 ppm & u_{CO} = 2.6 ppm

$$U_{PEMS} = !\sqrt{u_{input}^2 + v_{mod\,elling}^2 + v_{analyser}^2}$$

u_{modelling} = uncertainty related to goodness of fit of the model
Simply calculate a goodness –of-fit

* CASE 1: model every 1 minute and average NO_x and CO on 30 minutes:

* u_{NOx} = 0.9 ppm & u_{CO} = 1.4 ppm

* CASE 2: model every 1 minute and report NO_x and CO every 1 minute:

* u_{NOx} = 2.2 ppm & u_{CO} = 3.2 ppm

$U_{PEMS} = !\sqrt{u_{input}^2 + !_{mod\,elling}^2 + !_{analyser}^2}$

 \Box u_{analyser} = measurement error of AMS and O₂ AMS

LABORELEC

Error = f([Error of AMS and O₂ analyser]) & f([oxygen concentration]) & f([NOx concentration])

$$u_{c}^{2}([C]_{O2,ref}) = [C]_{O2,ref} \stackrel{?}{\xrightarrow{}} \times \underbrace{u^{2}([C]_{O2,actual})}_{[C]_{O2,actual}} + \frac{u^{2}([O_{2,actual}])}{(20.9 - [O_{2,actual}])^{2}} \right]$$
(equation 1)

* QAL1 certificate of SIEMENS URAS 23: $S_{AMS}(NO: 0 - 100 \text{ mg/m3}) = 1.7 \text{ ppm}$ $S_{AMS}(CO: 0 - 150 \text{ mg/m3}) = 1.5 \text{ ppm}$ Assume 2 * S_{AMS} for $O_2 = 0.4 \text{ vol}\%$

* CASE 1: model every 1 minute and average NO_x and CO on 30 minutes:

 \Rightarrow u_{NOx} = 2.2 ppm & u_{CO} = 2.1 ppm

* CASE 2: model every 1 minute and report NO_x and CO every 1 minute:

 \Rightarrow u_{NOx} = 3.6 ppm & u_{CO} = 4.5 ppm

$$U_{PEMS} = \frac{2}{\sqrt{u_{input}^2 + v_{mod\,elling}^2 + v_{analyser}^2}}$$

U_{PEMS} =

LABORELEC

CASE 1:

CA	SF	:)	•
CA	USL	- 2	•

	NOx (ppm)	CO (ppm)
U _{input}	0.1	0.3
U _{model}	0.9	1.4
U analyser	2.2	2.1
	4.7	5.1

	NOx (ppm)	CO (ppm)
U _{input}	1.4	2.6
U _{model}	2.2	3.2
U _{analyser}	3.6	4.5
	8.9	12.2

- U_{analyser} = highest contributor for total U \Rightarrow high quality PEMS calibration data = CRUCIAL!
- Since half-hourly = what needs to be reported \Rightarrow PEMS suitable when:

ELV(NOx) > 24 ppm and ELV(CO) > 51 ppm

$U_{PEMS} = !\sqrt{u_{input}^2 + v_{mod\,elling}^2 + v_{analyser}^2}$

Remark: u_{analyser} not taken into account in emission monitoring EN standards: ie. data used for calibration are supposed to be certain (eg. SRM for QAL2)

 \Rightarrow Not realistic & thus currently debated in several EN WG!

QA of PEMS

- ⇒ French AFNOR PEMS guide: even if SRM is used for PEMS calibration data, its uncertainty needs to be accounted for!
- ⇒ Our analysis confirms the importance of this analyser uncertainty!

QAL2 & AST:

ABORELEC

=> Standard Reference Method (SRM) parallel measurements (planned end of 2010)

QAL3: Methodology to be developed in 2011

Inputs may drift:

- Use of reference materials if they exist (e.g. calibration gas)
- Can the instruments be verified in-situ / easily taken out
- Metrological follow-up in a legal framework

Alternative methods can be:

- Correlation coefficients
- Inter-comparisons with measurements of the same type
- Data reconciliation techniques

Questions...

Thank You for Your Attention

[Five reasons for you to choose Laborelec]

- You have one-stop shopping for your energy related services
- You get access to more than 40 years of experience
- You increase the profitability of your installations
- You benefit from independent and confidential advice
- You are supported by a recognized and accredited laboratory

The Technical **Competence Centre** in **energy processes** and energy use

Laborelec Belgium Rodestraat 125 1630 Linkebeek Belgium Laborelec The Netherlands Amerikalaan 35 6199 AE Maastricht-Airport

T. +32 2 382 02 11 F. +32 2 382 02 41 RPR/RPM Brussels 0400.902.582 BTW/TVA BE 0400 902 582

www.laborelec.com info@laborelec.com

The Netherlands T. +31 63 88 26 022

22 de 10 1 22 de

LABORELEC - ASME TURBO EXPO 2010